Certifying Algorithms

R. M. McConnelt, K. MehlhorrP*, S. Nahef, P. Schweitzéy

aComputer Science Department, Colorado State University@ollins, USA
bMax Planck Institute for Informatics and Saarland UnivéysBaarbiicken, Germany
®Fachbereich Informatik, Universit Trier, Trier, Germany
dMax Planck Institute for Informatics, Saarlken, Germany

Abstract

A certifying algorithm is an algorithm that produces, withcl output, a certificate or witness
(easy-to-verify proof) that the particular output has ne¢to compromised by a bug. A user of a
certifying algorithm inputs, receives the outpytand the certificate, and then checks, either
manually or by use of a program, thafroves thay is a correct output for input. In this way,
he/she can be sure of the correctness of the output witheutd#o trust the algorithm.

We put forward the thesis that certifying algorithms are msaperior to non-certifying al-
gorithms, and that for complex algorithmic tasks, only i€grig algorithms are satisfactory.
Acceptance of this thesis would lead to a change of how dlgus are taught and how algo-
rithms are researched. The widespread use of certifyingrighgns would greatly enhance the
reliability of algorithmic software.

We survey the state of the art in certifying algorithms and tdit. In particular, we start a
theory of certifying algorithms and prove that the concepiniversal.

Contents

1 Introduction 4

2 First Examples 8
2.1 Tutorial Example 1: Testing Whether a Graph is Bipartite. 8
2.2 Tutorial Example 2: The Connected Components of an @otid Graph. . . . 9
2.3 Tutorial Example 3: Greatest Common Divisor. 9
2.4 Tutorial Example 4: ShortestPath Trees 11
2.5 Example: Maximum Cardinality Matchingsin Graphs. 12
2.6 Case Study: The LEDA Planar Embedding Package 13

3 Examples of Program Failures 18

4 Relation to Extant Work 19

*Corresponding Author

Preprint submitted to Elsevier August 2, 2010

5 Definitions and Formal Framework 21
5.1 Strongly Certifying Algorithms 22
5.2 Certifying Algorithms. 23
5.3 Weakly Certifying Algorithms. 24
54 Efficiency e 25
5.5 Simplicity and Checkability, 27
5.6 Deterministic Programs with Trivial Preconditions 29
5.7 Non-Trivial Preconditions. e 30
58 AnObjection. e 32

6 Checkers 32
6.1 ThePragmatic Approach 33
6.2 Manipulationofthelnput 33
6.3 Formal Verificationof Checkers. 34

7 Advantages of Certifying Algorithms 34

8 General Techniques 36
8.1 Reduction. 36

8.1.1 AnExample 37

8.1.2 The General Approach., 40
8.2 Linear ProgrammingDuality 41
8.3 Characterization Theorems. o 47
8.4 Approximation Algorithms and Problem Relaxation 47
8.5 Compositionof Programs. 51

9 Further Examples 51
9.1 Convexity of Higher-dimensional Polyhedra and Convedsd. 51
9.2 Solving Linear Systems of Equations 55
9.3 NP-Complete Problems. e 56
9.4 Maximum Weight Independent Sets in Interval Graphs 57
9.5 StringMatching. 59
9.6 ChordalGraphs 60
9.7 Numerical Algorithms 62
9.8 GuidetoLiterature. 63

10 Randomization 64
10.1 Monte Carlo Algorithms resist Deterministic Certifica. 64
10.2 Integer Arithmetic 64
10.3 Matrix Operations o i 66
10.4 CycleBases 67
10.5 Definitions e e e 71

11 Certification and Verification 74

12 Reactive Programs and Data Structures
12.1 The Dictionary Problem.
12.2 Priority QUEUES. o e

13 Teaching Algorithms
14 Future Work
15 Conclusions

16 Acknowledgements

75
77
78

83

84

85

85

———| Program forf b——

X y
accepty
Certifying X CheckelC
X | program forf y
reject

Figure 1: The top figure shows the 1/O behavior of a convemfipnogram for computing a functioh The user
feeds an input to the program and the program returns an owgpiihe user of the program has no way of knowing
whethery is equal tof (x).

The bottom figure shows the 1/0 behavior of a certifying aidpon, which computeg and a witnessv. The checker

C accepts the tripléx,y,w) if and only if w is a valid witness for the equality= f(x).

1. Introduction

One of the most prominent and costly problems in softwareneging is correctness of
software. When the user givesas an input and the program outpyighe user usually has no
way of knowing whethey is a correct output on inputor whether it has been compromised by a
bug. The user is at the mercy of the prograntektifying algorithmss an algorithm that produces
with each output &ertificateor witnessthat theparticular outputhas not been compromised by
a bug. By inspecting the witness, the user can convince Hirisg the output is correct, or
reject the output as buggy. He is no longer on the mercy of thgram. Figurel contrasts a
standard algorithm with a certifying algorithm for compgia functionf.

A user of a certifying algorithm inputs and receives the outpytand the witnessv. He
then checks thaw proves thay is a correct output for input. The process of checking can
be automated with eheckerwhich is an algorithm for verifying that proves thay is a correct
output forx. In may cases, the checker is so simple that a trusted impiltnen of it can be
produced, perhaps even in a different language where tharde®are fully specified. A formal
proof of correctness of the implementation of the certifysigorithm may be out of reach,
however, a formal proof of the correctness of the checker beafeasible. Having checked the
witness, the user may proceed with complete confidence tiyaitity has not been compromised.

We want to stress that it does not suffice for the checker todmmjple algorithm. It is equally
important that it also easy for a user to understaug wproves thaty is a correct output for
inputx.

Figure 2: The graph on the left is bipartite. The two sidedefhiipartition are indicated by node colors. The graph
on the right is non-bipartite. The edges of an odd-lengttecsiee highlighted.

A tutorial example that we describe in more detail below ie fftoblem of recognizing
whether a graph is bipartite, that is, whether the vertiagslze partitioned into two sets such
that all edges have an endpoint in each set. A non-certifgiggrithm for testing bipartiteness
outputs a single biy; the bit tells whether the graph is bipartite or not. A ceitify algorithm
does more; it proves its answer correct by providing an gpjate witnesswv, see Figure?. If
the graph is bipartite, thew is a bipartition. If the graph is not bipartitey is an odd-length
cycle inG. Clearly odd-length cycles are not bipartite. Thus an adyth cycle proves that a
graph is non-bipartite. For the user of the program there iseed to know that and why a non-
bipartite graph always contains an odd-length cycle. Thexlkér verifies either that all edges
have endpoints in both bipartition classes, or verifiesttimatycle is, in fact, a cycle, that it has
odd length, and that all the edges of the cycle exist in thplgrélve come back to this example
in Subsectior2.1 where we will show that a simple modification of the standdgbigthm for
deciding bipartiteness makes the algorithm certifying.

We put forward the thesis that certifying algorithms are mscperior to non-certifying
algorithms and that for complex algorithmic tasks only dgng algorithms are satisfactory.
Acceptance of this thesis would lead to a change of how algos are taught and how algo-
rithms are researched. The wide-spread use of certifyiggrathms would greatly enhance the
reliability of algorithmic software. In this paper, we s@ywthe state of the art in certifying al-
gorithms, give several new certifying algorithms, and sgatheory of certifying algorithms. In
particular, we show that every program can be made weakliifggrg without asymptotic loss
of efficiency. This assumes that a correctness proof in someaf system is available.

The usage of certifying algorithms protects not only againsorrect programs, but even
against incorrect algorithms. It allows the use of arbityaxomplicated algorithms and programs
to producey from x, which may be beyond the competence of the user to undersfdhthat
is required for the user, in order to accept an outputith the certainty that it has not been
corrupted, is an easy proof of whyproves thay is a correct output fox. In particular, there is

5

no need for the user to know that or understand why a cersfiggists for all valid input-output
pairs and how this certificate is computed.

The occurrence of an error is recognized immediately whercktecker fails to authenticate
the validity of the certificate. This means either tgavas compromised, or that only was
compromised. In either case, the user rejgets untrusted. If, in fact, the program is corrext,
occasion never arises when the user has reason to quesg@ragram’s outputThis is despite
the fact that the correctness of the implementation may edénlown with certainty to anybody,
even the programmer.

The reason why the approach is more practical to implemehisit sidesteps completely
the issue of whether the certifying algorithm is correctiypiemented, which is difficult, by
showing only that a particular output is correct, which ieafeasy. There are nevertheless many
problems for which certifying algorithms are not yet knovamd thinking of an appropriate
certificate is an art form that is still developing.

In the discussion above, we used vague terms such as “siropl&asy to understand”.
We will make these notions more precise in later sectiongielier, we will not give a formal
definition of certifying algorithm. We hope that the readdr gevelop an intuitive understanding
of what constitutes a certifying algorithm and what does whiich will allow him to recognize
a certifying algorithm when he sees one.

The designers of algorithms have traditiongitpved that their algorithm is correctHow-
ever, even a sound proof for the correctness of an algorithfarifrom a guarantee that an
implementatiorof it is correct. There are numerous examples of incorreglementations of
correct algorithms (see Secti@h

History:. The notion of a certifying algorithm is ancient. Alreadykdtarizmi in his book on al-
gebra described how to (partially) check the correctness mliltiplication; see Sectioh0.2
The extended Euclidean algorithm for greatest common aligiss also certifying; see Sec-
tion 2.3. All primal-dual algorithms in combinatorial optimizatiare certifying. Sullivan and
Masson EM90, SM91] advocated certification trails as a means for checkingnk&nce cor-
rectness of a program. The seminal work by Blum and KanB&®§] on programs that check
their work put result checking in the limelight. There is rewmgr an important difference be-
tween certifying algorithms and their work. Certifying grams produce with each output an
easy-to-check certificate of correctness; Blum and Kanmameinly concerned with check-
ing the work of programs in their standard form. Mehlhorn &#her were the first to rec-
ognize the potential of certifying algorithms for softwatevelopment. In the context of the
LEDA project [MN89, MN95], they used certifying algorithm as a technique for inciegs
the reliability of the LEDA implementations. The term “déying algorithm” was first used
in [KMMSO06]. Before that Mehlhorn and Naher used the tdPmogram Checkingor Result
Checking see MNS™99, MNU97, MN98]. We give a detailed account of extant work in Sec-
tion 4.

Generality:. How general is the approach? The pragmatic answer is thahew kf 100+ cer-
tifying algorithms; in particular, there are certifyingyakithms for the problems that are usually
treated in an introductory algorithms course, such as adrdeand strong connectedness, mini-
mum spanning trees, shortest paths, maximum flows, and nmiaximatchings. Also, Mehlhorn

6

and Naher succeeded in making many of the programs in LED#\yirg. We give more than
a dozen examples of certifying algorithms in this paper.

The theoretical answer is that every algorithm can be maadhyeertifying without asymp-
totic loss of efficiency; however, there are problems thahobhave a strongly certifying algo-
rithm; see Sectiob. A strongly certifying algorithms halts for all inputs. Thétness proves that
either the input did not satisfy the precondition or the otgatisfies the postcondition. It also
tells which of the two alternative holds. A weakly certifgimlgorithm is only required to halt
for inputs satisfying the precondition. The witness praved either the input did not satisfy the
precondition or the output satisfies the postconditionjtmdes not tell which alternative holds.
The construction underlying the positive results is artifiand requires a correctness proof in
some formal system. However, the result is also assuringfygeg algorithms are not elusive.
The challenge is to find natural ones.

Relation to Testing and VerificationThe two main approaches to program correctness are pro-
gram testing and program verificatiorogram testingZel05 executes a given program on
inputs for which the correct output is already known by soteomeans, e.g., by human effort
or by execution of another program that is believed to beecbrrHowever, in most cases, it is
infeasible to determine the correct output for all possibfauts by other means or to test the
software on all possible inputs. Thus testing is usuallpmplete and therefore bugs may evade
detection; testing does not show the absence of bugs. ThHaiPeoug is an exampleB\W96|.
Certifying programs greatly enhance the power of testingefifying program can be tested on
every input. The test is whether the checker accepts the {oipy,w). If it does not, either the
output or the witness is incorrect.

Program verificatiorrefers to (formal) proofs of correctness of programs. Theggles are
well establishedflo67, Hoa69. However, handwritten proofs are only possible for smadl-p
grams owing to the complexity and tediousness of the pronégss. Using computer-assisted
proof systems, formal proofs for interesting theorems wecently given, e.g., for the four-
color theorem Gon0§ and the correctness of an implementation of Dijkstra’srest-path al-
gorithm [MZ05]. A difficulty of the verification approach is that, strictgpeaking, it requires
the verification of the entire hardware and software staokdgssor, operating system, compiler)
and that it can only be applied to programming languages foclwa formal semantics is avail-
able. For many popular programming languages, €gG++, and Java, this is not the case.
The project VerisoftYer] undertakes the verification of a complete hardware anaveoét stack.
Checkers are usually much simpler than the algorithms theglc Therefore formal verification
of the checker will be easier than formal verification of tmegram itself; seeBSM97] for an
example. Moreover, the checker has usually lower asyngototnplexity than the program, and
so the checker could be written in a possibly less efficiemglage with a formal semantics or
without the use of complex language features.

Organization of Paper:.In the upcoming SectioB, we first illustrate the concept on four tutorial
examples suitable for the undergraduate computer-sciurceulum (testing whether a graph
is bipartite, determining the number of connected compteneina graph, verifying shortest path
distances, and computing greatest common divisors). Wegive an example that illustrates a

simple certificate for an optimization problem that is coitgiied to solve (finding a maximum
matching in a general graph). We conclude the section withcaount of how a bug in the
LEDA module for planarity testing led Mehlhorn and Nahertih@ conclusion that certifying
algorithms should be a design principle for algorithmicdites. In SectiorB we give some
examples of program failures in widely distributed softevand Sectiod discusses extant work.
In Section5 we start a theory of certifying algorithms and formally oduce three kinds of
certifying algorithms. We show that every deterministiognam can be made weakly certifying
without asymptotic loss of efficiency. This assumes that@éd proof of correctness is available.
In Section6 we discuss checkers and in Sectionve highlight the advantages of certifying
algorithms. General techniques for the development offgirg algorithms are the topic of
Section8. In Section9 we give further examples of certifying algorithms from aiegr of
subfields of algorithmics and also survey the literature enifying algorithms. Randomized
algorithms and checkers are the topic of Sectlén In Section1l, we discuss the relation
between certification and verification. Sectibhdiscusses certification in the context of data
structures. Finally, Sectioh3 discusses the implications for teaching algorithms, $acti4
lists some open problems, and and Secliboffers some conclusions.

2. First Examples

2.1. Tutorial Example 1: Testing Whether a Graph is Bipartit

A graphG = (V,E) is calledbipartite if its vertices can be colored with two colors, say red
and green, such that every edge of the graph connects a rea gme@n vertex. Consider the
function

is_bipartite: set of all finite graphs- {0,1},

which for a graphG has value 1 if the graph is bipartite and has value 0 if the lgiamon-
bipartite. A conventional algorithm for this function rets a boolean value and so does a con-
ventional program. Does the bit returned by the conventipnagram really give additional
information about the graph? We believe that it does not.

What are witnesses for being bipartite and for being nomutiie? What could a certifying
algorithm for testing bipartiteness return? A witness feinly bipartite is a two-coloring of the
vertices of the graph, indeed this is the definition of beingakite. A witness for being non-
bipartite is an odd cycle, i.e., an odd-length sequence gégdo, V1), (V1,V2), ..., (Vok, Vok+1)
forming a closed cycle, i.e\p = vo. 1. Indeed, for alli, the verticesy; andv;,1 must have
distinct colors, and hence all even numbered nodes haveadoeand all odd numbered nodes
have the other color. Bwp = vox . 1 and hencey must have both colors, a contradiction.

Three simple observations can be made at this point:

First, a two-coloring certifies bipartiteness (in fact,stthe very definition of bipartiteness)
and it is very easy to check whether an assignment of colarame blue to the vertices of a
graph is a two-coloring.

Second, an odd cycle certifies non-bipartiteness, as wesdrgbiove. Also, it is very easy
to check that a given set of edges is indeed an odd cycle inghgr@bserve that, in order to

check the certificate for a given input, there is no need takitat a non-bipartite graph always
contains an odd cycle. One only needs to understand, thatchoyale proves non-bipartiteness.
It is quite reasonable to assume that a progCdior testing the validity of a two-coloring and
for verifying that a given set of edges is an odd cycle can i@emented correctly. It is even
within the reach of formal program verification to prove tlerectness of such a program.
Let us finally argue that there is certifying algorithm fopértiteness, i.e., an algorithm that
computes said witnesses. In fact, a small variation of thedsird greedy algorithms will do:

1. choose an arbitrary nodeand color it red; also declareunfinished.

2. aslong as there are unfinished nodes choose one of them asaydeclare it finished. Go
through all uncolored neighbors, color them with the oth@oc(i.e., the color different
from v's color), and add them to the set of unfinished nodes. Alsmreethat they got
their color fromv. When step 2 terminates, all nodes are colored.

3. Iterate over all edges and check that their endpoints ti@t@ct colors. If so, output the
two-coloring. If not, lete= (u,v) be an edge whose endpoints have the same color. Follow
the pathspy and py of color-giving edges fronu to r and fromv to r; the paths together
with e form an odd cycle. Why? Sinagandv have the same color, the pathgand py
either have both even length (if the colorwéndyv is the same as the color of or have
both odd length (if the color af andv differs fromr’s color). Thus the combined length
of py andpy is even and hence the ed@ev) closes an odd cycle.

We summarize: There is a certifying algorithm for testingastiteness of graphs and it is
reasonable to assume the availability of a correct cheakethie witnesses produced by this
algorithm.

2.2. Tutorial Example 2: The Connected Components of anrgotgid Graph

It is not hard to find the connected components of a graph. Mexvere show that once they
are found, a witness can be produced that makes it possibheetik the result even more simply.

We number the components. The witness assigns a pair of gativenumbersi, j) to each
vertexv. The first number of the pair is the number of the component to whichelongs.
The second numbeyris the number of the vertex within the component. We numbever-
tices within a component such that every vertex except ferltas a lower numbered neighbor.
Observe that such a numbering proves that every vertexmatisomponent is connected to the
vertex with the smallest vertex number. Fig@rghows an example.

To check this certificate, it suffices to check, for each nalat its labels are nonnegative,
for each edge, that the endpoints have the same componebenamd distinct vertex numbers
within the component, and to mark the endpoint with the langenber if it is not already marked,
and for each component, that exactly one of its verticesmsarked.

2.3. Tutorial Example 3: Greatest Common Divisor

The greatest common divisor of two nonnegative integensdb, not both zero, is the largest
integerg that dividesa andb. We writeg = gcd(a,b). The Euclidean algorithm for computing

9

G @ G @
O @:‘@

Figure 3: A graph with three connected components. Theoestare labelled with pairs, j). The first label is
the number of the component to which the vertex belongs amdebond label is the number within the component.
Within a component, every vertex has a smaller numberedbeigexcept for the vertex numbered zero.

the greatest common divisor is one of the first algorithmsmbed. In its recursive form it is as
follows.

ProcedurésCD(a, b): a andb are integers wittla > b > 0 anda > 0
If b= 0, returna;
returnGCD(b,a modb);

The Euclidean algorithm is non-certifying. A simple modition, known as the extended
Euclidean algorithm, makes it certifying. In addition, teneputingg = gcd(a, b), it also com-
putes integers andy such thag = xa+yb. !

Lemma 1. Let a, b and g be nonnegative integers, a and b not both zewlediy= xa+ yb for
integers x and y. If g divides a and b ther=ggcd(a, b).

Proof: Letd be any divisor ok andb. Then
a b a b

and henceal dividesg. In particular, gcda,b) dividesg. Sinceg dividesa andb, g divides
gcd(a, b). Thusg = gcd(a,b). O

It is easy to extend the recursive procedure above suchtthbso computes appropriae
andy: If a> b= 0 then gcda,b) =a=1-a+0-b, and ifa> b > 0 and gcda modb,b) =
x(a modb) + yb then gcda, b) = gcdla modb, b) = x(amodb) + yb = x(a— |a/b|b) + yb=
xa+ (y— [a/b])b. This leads to the following recursive program.

The existence of these integarandy is referred to as the Lemma of Bézout, as he proved the gestatement
for polynomials. In fact, the extended Euclidean algoriibra certifying algorithm that computes greatest common
divisors in any Euclidean domain.

10

Procedur&eGCD(a, b); assumea > b > 0 anda > 0;
returns(g, x,y) such thag = gcd(a, b) andg = xa+ yb.
If b= 0, return(a, 1,0);
let (g,y,X) = EGCD(b,a modb); return(g,x,y — |a/b]).
Thus, to check the correctness of an output of the extendelidean algorithm, it suffices

to verify for the provided integersandy (they constitute the witness) thait= xa+ yband thag
dividesa andb.

2.4. Tutorial Example 4: Shortest Path Trees

Our next example, the computation of shortest paths, isia babroutine in numerous algo-
rithms (see e.g. Subsectidn.4). LetG = (V,E) be a directed graph, Istbe a special vertex,
the source, and let: E — R be a positive cost function on the edges. The cg} of a path
p is the sum of the costs of its edges and the cost of a shortestgest) path frommtovis

d(v) = min{c(p) | pis a path fronstov}.

How can we verify that an output functid: V — Rx¢ is equal to the actual distance functidn
This is easy: if

D(s) = O (start value)
for every edg€u, V) D(v) < D(u)+c(u,v) (triangle inequality)
for v+ sthere is an edgéu,v) with D(v) = D(u)+c(u,v) (justification)

thend(v) = D(v) for all v.

Indeedd(s) = 0 since the empty path has cost zero and any path has norvesgagt. Thus
d(s) = D(s). We next showD(v) < d(v) for all v. Consider any # sand letvg =S,v1,...,Vk =V
be the path frons to v that definesd(v). Thend(vi;1) = d(v) + c(vi,Vi11) for all i > 0 and
D(vo) = 0 < 0=d(vp). Assume now that we have shoixv;) < d(v;) for somei > 0. Then

D(Vi+1) < D(Wi)+c(Vi,Vit1) triangle inequality
<d(vi)+c(vi,Vit1) sinceD(vi) < d(vj)
=d(Vi+1)

and so the claim follows by induction. Assume finally, for theke of a contradiction, that
D(v) < d(v) for somev. Among thev with D(v) < d(v) choose the one with smalleBtv).
SinceD(s) = d(s) = 0, we know thatv # s. Then there must be a vertexsuch thatD(v) =
D(u) +c(u,v). Also D(u) < D(v) since edge costs are assumed to be positive. By our choice
of v, D(u) = d(u). Thus there is a path of co&i(u) from s to u and hence a path of cost
D(u) 4+ c(u,v) = D(v) from sto v. Therefore,d(v) < D(v), a contradiction to our assumption
thatD(v) < d(v) for somev.

In order to ease the verification that an output funcide the distance functiod a certifying
algorithm may for every vertexindicate the justifying edgéu, v).

Note that the argument above crucially uses the fact that aagghts are positive, see Fig-
ure 4 for an counterexample when edges of weight zero are allowethe presence of edges

11

\Y

Figure 4: The presence of edges of cost 0 makes strongdigastin necessary: The ed¢gu) has cost 1 and the
edgequ,v) and(v,u) have cost 0. Thed(s) = 0 andd(u) = d(v) = 1. HoweverD(s) = D(u) = D(v) = O satisfies
all three conditions sufficient for certification in the cade positive cost function.

Figure 5: The node labels certify that the indicated matglsnof maximum cardinality: All edges of the graph
have either both endpoints labelled as two or at least onpanidlabelled as one. Therefore, any matching can
use at most one edge with two endpoints labelled two and at fmosedges that have an endpoint labelled one.
Therefore, no matching has more than five edges. The matshimgn consists of five edges.

of weight zero, a stronger justification required. In thiseave require that every vertexs
assigned an integéfv), and for every justification edge, v) of weight zerdk(u) < k(v) holds,
i.e. additionally toD(v) = D(u) 4+ 0 we requirek(u) < k(v).

2.5. Example: Maximum Cardinality Matchings in Graphs

The previous examples illustrate what we mean by a cergfhglgorithm on four simple
examples, but do not illustrate the full potential of the @agh, since, e.g., determining whether
a graph is bipartite or determining the connected comparadra graph are not difficult problems
to begin with.

We now give a more typical example, which shows how the amgprean render trivial the
checking of correctness of an output produced by an implémien of a complex algorithm.
A matchingin a graphG is a subseM of the edges o6 such that no two share an endpoint.
A matching has maximum cardinality if its cardinality is abbkt as large as that of any other
matching. Figure5 shows a graph and a maximum cardinality matching. Obseraetkte
matching leaves two nodes unmatched, which gives rise tgukstion whether there exists a

12

matching of larger cardinality. What is a witness for a matghbeing maximum cardinality? Ed-
monds Edm65aEdm65k gave the first efficient algorithm for maximum cardinalityatohings.
The algorithm is certifying.

An odd-set cover OSGf G is a labeling of the nodes @& with nonnegative integers such
that every edge dgE is either incident to a node labeled 1 or connects two nodesddd with the
same numbeir> 2.

Theorem 1 (Edm654]). Let N be any matchingin G and let OSC be an odd-set cover of G. Fo
any i> 0, let iy be the number of nodes labeled i. Then

IN| < n1+.;m/2j .

Proof: Fori,i > 2, letN; be the edges il that connect two nodes labelednd letN; be the
remaining edges iN. Then

N[<[m/2] and [Ny<my

and the bound follows. O

It can be shown (but this is non-trivial) that for any maximuoardinality matchingV there
is an odd-set coveDSCwith
M =ny+ S [mi/2), (1)

thus proving the optimality of1. In such a cover alh; with i > 2 are odd, hence the name.

The certifying algorithm for maximum cardinality matchimgturns a matchingl and an
odd-set coveOSCsuch that {) holds. By the argument above, the odd-set cover proves the
optimality of the matching. Observe, that isibt necessary to understand why odd-set covers
proving optimality exist. It is only required to understaheé simple proof of Theorerh, show-
ing that equation) proves optimality. Also, a correct program which checksthler a set of
edges is a matching and a node labelling is an odd-set covehwdyether satisfyl(is easy to
write.

2.6. Case Study: The LEDA Planar Embedding Package

A planar embeddin@f an undirected grapt is a drawing of the graph in the plane such
that no two edges db cross and no edge crosses over a vertex. See Fégorean example. A
graph isplanar if it is possible to embed it in the plane in this way. Planaaprs were among
the first classes of graphs that were studied extensively.

A faceof a planar embedding is a connected region of the planeehains when points on
the embedding are removed. Lrebe the number of vertices) the number of edges, and It
be the number of faces of a planar embedding. Euler gave wikaown asuler’s formulafor
a connected planar embedded graph: f = m+ 2 (see Figur®).

The proof of this is frequently used as undergraduate esesi@n induction on the number
of edges. As a base case= n— 1, the graph is a tree, and an embedding of a tree always has

13

Figure 6: The depicted connected planar graph has 8 verfidases (including the outer face), and thusB— 2=
11 edges.

exactly one face. The formula holds. For the induction ssepposeG is a planar graph with
m > n—1 and the formula holds for all planar embeddings of conmbgtaphs with fewer tham
edges. Sincen> n—1, G has a cycle. Removal of an edge of the cycle in any planar ednbgd
of G causes two faces to merge, leaving= n vertices,f’ = f — 1 faces, and’ = e— 1 edges.
By the induction hypothesis, it holds thalt+ f' = € + 2, which impliesn+ f = e+ 2, and the
formula holds for the original planar embedding@&f

In the early 1900's, there was an extensive effort to giwharacterizatiorof those graphs
that are planar. In 1920, Kuratowski gave what remains ontheinost famous theorems in
graph theory: a graph is planar if and only if it hassutndivisiornof a Ks or aKs 3 as a subgraph
(see Figurer). TheKs is the complete graph on five vertices, g3 is the complete bipartite
graph with three vertices in each bipartition class, andoaisision of a graph is what is obtained
by repeatedly subdividing edges by inserting vertices gfeke two on them.

The planarity test in the Library of Efficient Data Structsirend Algorithms (LEDA), a
popular package of implementations of many combinatondl geometric algorithmsjN99,
MNO95], played a crucial role in the development of certifyingaithms and the development
of LEDA.

There are several linear time algorithms for planarityitgsiHT74, LEC67, BL76]. An
implementation of the Hopcroft and Tarjan algorithm waseatitb LEDA in 1991. The imple-
mentation had been tested on a small number of graphs. In 4988earcher sent Mehlhorn and
Naher a graph together with a planar drawing of it, and gaimiut that the program declared the
graph non-planar. It took Mehlhorn and Naher some daysscoder the bug.

More importantly, they realized that a complex questionhef torm “is this graph planar”
deserves more than a yes-no answer. They adopted the thegsis t

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

What does this mean for the planarity test?

14

@

Figure 7: Every non-planar graph contains a subdivisiomef af the depicted Kuratowski grapKs andKs 3 as a
subgraph. The lower part of the figure shows a non-planathgfdpn-planarity is withessed byi&; .

If a graph is declared planar, a proof should be given in tien fof a planar drawing or an
embedding, which the program already did. If a graph is nlandr, the program should not
just declare this; it should supply a proof of this. The extiste of an obvious proof is known by
Kuratowski’s theorem: it suffices to point out a Kuratowskibgraph.

Linear time algorithms\|Vil84, Kar9(for finding Kuratowski subgraphs were known in
1993; unfortunately, Mehlhorn and Naher found the al¢pong too complicated to implement.
There is however a trivial quadratic time algorithm whiclvésy simple to implement.

for all edges of G do
if G\ eis non-planathen
removee from G;
end if
end for

The output of this algorithm is a subgraph of the originapgrarhe subgraph is non-planar,
since an edge is only removed if non-planarity is preserard removal of any edge of it, makes
it planar. Thus the subgraph is a minimal (with respect tceddglusion) non-planar subgraph
and hence a subdivision of a Kuratowski graph.

Therefore, in 1994, they had a quadratic time certifyingpatgm for planarity and a linear
time non-certifying one. They later developed their owntiggng linear time algorithm for
finding Kuratowski subgraph#$/N99, Section 8.7].

15

Note that the proof of Kuratowski’s theorem, which is thatubdivision of aKs or aKs3
always exists in a non-planar graph, is irrelevant to théqmal for convincing a user that a graph
is non-planar. All that is needed is for the user to undetstha following proof:

Lemma 2. A graph that contains a subdivision o i&r K3 3 is non-planar.

Proof: Subdividing an edge cannot make a non-planar graph plamérssffices to show that
Ks andK3 3 are non-planar. Suppose there is a planar embeddikig &ach face touches at least
three edges and each edge touches at most two faceKsThees ten edges, so the number of
faces is at mosit(2/3) - 10| = 6. By Euler’s formula, 56 > 10+ 2, a contradiction. Similarly,
supposeKs 3 has a planar embedding. Since the graph is bipartite, tHe eyound each face
must be even, so each face touches at least four edges aneédgelonce again touches at
most two faces. The number of faces is at md&y/4)9| = 4. By Euler’s formula we obtain
6+4 > 9+ 2, a contradiction. O

Let us now examine the checker. In the case of non-planaotynatter how the Kuratowski
subgraph is found, a convenient certificate is obtained twyrmang it as sequences of edges. A
Ks has ten edges, so if the Kuratowski subgraph is a subdividiaKs, it consists of ten disjoint
paths sharing five ending vertices. The ending verticegstezll and the ten paths are each given
as a sequence of edges, in order. The checker verifies theddbrpair of ending vertices there is
a path with these vertices as beginning and end, cyclingitiirthe paths, checking and marking
vertices along the way, to make sure that the paths are wliggcept at their endpoints. The
check of a3 3 is similar.

Let us turn to witnesses of planarity. The obvious witnesa @anar drawing. There is
a drawback of using a planar drawing as the witness: It istnoial to check in linear time
whether a drawing is actually planar.

A less obvious form of witness is@mbinatorial planar embeddingee Figure3. We first
explain, what a&ombinatorial embedding. A combinatorial embedding uses tivain directed
edges(u,v) and(v,u) for each undirected edge of the graph. These twins havegsitd each
other. For each vertaxof G, the edges incident to it are arranged in a circular linkstd {ju). A
combinatorial embedding @anar if there is a planar embedding &fin which for each vertex
u the counterclockwise order of the edges incident &mrees with the cyclic order in(u).

How does one verify whether a combinatorial embedding isgfa One simply checks
Euler’s relation. A combinatorial embedding gives rise tteeomposition of the directed edges
into a collection of cycles, calledoundary cyclesThe boundary cycle containing a particular
directed edgé€u,v) is defined as follows. Letu,v) be a directed edge with twifv,u) and let
(v,u) be the directed edge aftév,u) in the circular listL(v). Then(v,U’) is the next edge in
the boundary cycle containingi, v), cf. Figure8. We continue in this way until we are back at
(u,v). Why are we guaranteed to come back to where we started? daldishtthis, it suffices to
note that the edge precedifg v) in the boundary cycle is also uniquely defined. L&t/) be
the edge beforéu,V') in L(u) and let(V,u) be the twin of(u,V). Then(V,u) precedesu, V) in
the boundary cycle containing it.

16

a b e counterclockwise
vertex .))
cyclic adjacency list
a (b)
b (a,c,d)
d C (d,b)
d (b,c,e)
C € (d)

Figure 8: A planar graph and the corresponding planar coatbiral embedding: For each vertex, the incident
edges are listed in counterclockwise order. The boundatiesyare(a,b), (b,d),(d,e), (e d),(d,c),(c,b),(b,a)
and(c,d), (d,b), (b,c). Observe that the successor(dfe) is determined as follows: go to the tw{r,d) and then

to the next edge in cyclic order, i.€e d).

Lemma 3. Let G be a connected graph witlcnl vertices, and m edges. Then a combinatorial
embedding of G with f boundary cycles is plaiifaand only if n+ f = m+2.

Proof: As before, we argue by induction on the number of edges. Asa basemm=n—1
and the graph is a tree. Any combinatorial embedding of asrplanar and gives rise to a single
boundary cycle; hencé= 1 andn+ f = m+2.

For the induction step, létbe a combinatorial embedding of a connected gi@ptith m >
n—1 edges, and we assume by induction that the lemma applidstoreinatorial embeddings
of graphs withm— 1 edges. Iff = 1, then the embedding cannot be planar, si@d®s a single
boundary cycle and any planar drawing has more than onerieamecordance with the fact that
n+ f = m+ 2 does not hold.

Supposef > 2. We claim that there must be an edge {(u,v), (v,u)} such thatu,v) and
(v,u) lie on different boundary cycles; otherwise, the edges tlicyrder around each vertex
are forced to be in the same boundary cycle, and SBiseconnected, there is only one boundary
cycle, a contradiction. Le&’ = G — e and letl’ be the combinatorial embedding Gf obtained
by removinge from I. This merges two boundary cycles into one, call,isol’ hasf’' = f — 1
boundary cyclesyY = m— 1 edges, and’ = nvertices. By basic algebr#,satisfies the formula
if and only if | does. By the induction hypothedis hencd, satisfies the formula if and only if
|” is planar. Ifl” is not planar, then neither Is sincel’ is a subembedding. If is planar, then
C is the boundary of a face, s#&; in some planar drawin®’ of G’ corresponding td’. Since
uandv are onC, F can be subdivided iD’ by drawing the edgéu, v} so that it is internal td-
except at its endpoints. This yields a planar drawibngorresponding to, sol is planar. O

So in the case of a planarity a convenient witness is a cortdysinhembedding ofc. The
checker determines the numbesf boundary cycles of the combinatorial embedding and @scep
the combinatorial embeddingrif+ f = m+ 2.

The example illustrates that the reason why a certificataysvexists (the proof of Kura-
towski’s theorem in this case) is irrelevant to the protdoolconvincing a user that a particular
output is correct. All that is needed is for the user to undeid the proofs of Lemméakand3.

17

What does the case study performed in this section illlesabbut the current state of algo-
rithm design and software engineering? The algorithm orcwvthe program was based is well-
known to be correct. Obviously, the programmer made a nestakmplementing it. However,
another problem was that users were willing to accept a deaa that a graph was non-planar,
based partly on the knowledge that it was based on an algotitht is well-known to be correct.

Additionally, another problem was that the designers obatgms traditionally consider
their work done when they have produced a proof that theordalgn never produces an incor-
rect output. It has gone unrecognized in the algorithmglesommunity that, in view of the
implementation obstacles, algorithm design should alsstthe process of obtaining a correct
implementation.

3. Examples of Program Failures

To emphasize the importance of methods that facilitataléity of computation, we give
some examples of failures in algorithmic software. Theufa$ are either bugs or due to the
use of approximate arithmetic. The first kind of failure slsatlvat even in prevalent, widely
distributed programs software bugs have historically apge: Of course, once bugs become
known, they are repaired and hence the bugs reported here thmger exist in the current
version of the programs.

Planarity Test in LEDA 2.0: As extensively illustrated in Subsecti@y6, the planarity test in
LEDA 2.0 was incorrect. It declared some planar graphs dangs. Mehlhorn and Naher cor-
rected the error in LEDA 2.1 and made the planarity testfy@nty. This was their first use of a
certifying algorithm. However, the first solution was faorn satisfying, as the running time of
the certifying algorithm was quadratic compared to ling@aetfor the non-certifying algorithm.
It took some time to develop an equally efficient certifyingagithm.

Triconnectivity of Graphs:A connected graph is triconnected if the removal of any péir o
vertices does not disconnect it. There are linear-timerdtgas for deciding triconnectivity of
graphs HT73, MR92]. Gutwenger and Mutzel3dMO0Q] implemented the former algorithm and
reported that some non-triconnected graphs are declaceshiected by it. They provided a
correction. We come back to this problem in Secto®

Constrained Optimization in Mathematica 4.2/rsion 4.2 of Mathematica (a software environ-
ment for mathematical computation) fails to solve a smaéiger linear program; the example is
so small that we can give the full input and output. The firstypem asks to compute the mini-
mum of the functiorx subject to the constrainis= 1 andx = 2. The system returns the optimal
value is 2 and that the substituti@n— 2 attains it. The second problems asks to maximize the
function under the same constraints. The system answdrghthaptimal value is infinite and
thatx has an indeterminate value in this solution.

In[1] := ConstrainedMn[x , {x==1,x==2} , {x}]
Qit[1] = {2, {x->2}}
In[1] := ConstrainedMax[x , {x==1,x==2} , {x}]

18

Constrai nedMax: : "l psub”: "The problemis unbounded."
Qut[2] = {Infinity, {x -> Indeterm nate}}

Pentium Bug:.A version of the Pentium chip contained an error in the harevi@r division BW96.
This hardware error was caused by an incomplete lookuptable

Linear Programming:.A linear optimization problem is the task to maximize or mie a
linear objective function subject to a set of linear constsa In mathematical language,

maxc'x subjectto Ax<bandx> 0.

wherex is ann-vector of real variableg; is a realn-vector,A is anm x n matrix of reals and

is a realm-vector. A large number of important problems can be fortadas linear programs,
see Sectior8.2 for some examples. In applications of linear programmiheg, éntries ofc,

A andb are rational. Linear programming solvers such as CPLEX oPIFEX use floating
point arithmetic for their internal computations and heace susceptible to round-off errors.
The solvers do not claim to find the optimal solution for alblplem instances. Of course, a
user would like to know whether the solution for his/her [gater instance is correct. The
papers DFKT03, ACDEOQ7), see also Sectio.2, discuss how solutions to linear programs can
be verified. They also give examples of instances for whighuper solvers such as CPLEX and
SOPLEX fail.

Geometric Software:(Geometric software is a particular challenge for corresgnélgorithms
are formulated for a Real RAM, i.e., a machine that can compith real numbers, but programs
run on machines that offer only floating point and integehanetic on bounded length numbers.
The gap is hard to bridge; se€N§IP08] for some illustrative examples of how geometric pro-
grams can fail. Reliable geometric computing is now an aciirea of researctYfp03 CGA,
HLO4]. Section9.1discusses certification of geometric software.

. Needless to say, most bugs in current software are unknowact it is quite natural to assume

that no large software library is flawless. Certifying alfuns may detect these flaws, but more
imporatantly they assure us that the currently given angsvasrrect. Before we discuss further

advantages of certifying algorithms in Secti@dnwe discuss the relation to extant work and
concretize our definition of certifying algorithms.

4. Relation to Extant Work

Program correctness is one of the major problems in softeagineering. The theoret-
ically most satisfying approach to program correctnesoimél verification. The program
is formulated in a language with well-defined semantics; pred postcondition are formu-
lated in some formal system, and the proof of correctnessriged out in this formal sys-
tem (and with the help of a theorem prover). Work on progranifigation started in the late
'60s [Flo67, Hoa69 Hoa77 and tremendous progress was made since thiern. [Unfortunately,
the verification of complex algorithms written in populaiogramming languages such @s
C+ + or Java is still beyond the state of the art.

19

Program testing is the most widely used approach to progmaneaness, se&gl0q for a
recent account. A list of correct input/output paixs y;) is maintained. A program is accepted
if, for eachx; on the list, it produces the correspondipgThe common objections against testing
are that it can prove the presence of errors, but never theerece, and that a program can only
be tested on inputs for which the correct output is alreadywknby other means.

It has been known since the 1950's that linear programmiadjtgty Chv93 Sch03 provides
a method for checking the result of linear programs. In a @isolutions(x, X), one for a linear
program and one for its dual, both solutions are optimaldfanly if they have the same objective
value, see Subsecti@?2 A special case of linear programming duality is the max-flowm-cut
theorem for network flows.

Sullivan and Massor§M90, SM91, BS95 BSM95 SWM95 BS94 introduced the concept
of a certification trail for checking. The idea is that a prengrleaves a trail of information that
can be used to check whether it worked correctly. They apftie idea mainly to data structures.
In later work BSM97), they combined certification trails with formal verificati. We discuss
checking of data structures in Secti@@. Certification trails catch errors ultimately, but not
immediately.

Blum and KannanBK89, BK95] started a theory of program checking; s&up3, BW94,
BLR90, WB97, BW96] for follow-up work. Given a progran® allegedly computing a func-
tion’ f, how can one check wheth@&(xg) = f(xo) for a particular inputxgp. A checkerC
is a probabilistic expected-polynomial-time oracle maeh(it usesP as a subroutine) with
the property: ifP(x) = f(x) for all x, thenC on inputxy accepts with high probability. If
P(x0) # f(x0), C on inputxg rejects with high probability. IP(xg) = f(xg), but P # f, the
checker may accept or reject. They describe, among othexskers for graph isomorphism, the
extended gcd, and sorting reals. BLR90] the concept is generalized to self-correcting algo-
rithms. For example, assuraddis a function that correctly adds for most pairs of inputseih
add(x,y) = add(add(x,r),add(y, —r)), wherer is a random number, correctly adds all pairs with
nonzero probability, since the concrete additkany is replaced by three random additions.

There are essential differences between certifying dlgos and the work by Blum et al.
First, they mention but do not explore that adding additiandput (= our withess) may ease
the life of the checker; they give the extended gcd and maxirfiow as examples. In contrast,
we insist that certifying programs return witnesses thaw@rthe correctness of their output.
In exceptional cases, the witness may be trivial. The seesséntial difference is that they
allow checkers to be arbitrarily complex programs (as loagheey are polyomial-time) and
nevertheless assume checkers to be correct. In constraspswt that checkers are simple
program and assume that only the simplest programming task&¥e done without error; see
Subsectiorb.1

Our approach has already shown its usefulness in the LEDggqrfi ED]. At the time of
this writing, LEDA contains checkers for all network and otahg algorithms (mostly based on
linear programming duality), for various connectivity ptems on graphs, for planarity testing,
for priority queues, and for the basic geometric algoritipmvex hulls, Delaunay diagrams,

2They consider only programs with trivial preconditions

20

and Voronoi diagrams). Program checking has greatly iseéhe reliability of the implemen-
tations in LEDA. There are many other problems for whichiégng algorithms are known. We
review some of them in the sections to come and give a guideetbterature in Subsectidh8.

Proof-carrying codeNL96, Nec97 is a “mechanism by which a host system can determine
with certainty that it is safe to execute a program suppligdub untrusted source. For this to
be possible, the untrusted code producer must supply wetledkde a safety proof that attests to
the code’s adherence to a previously defined safety policg.hbst can then easily and quickly
validate the proof (quote fromiNlec97)”. We will use methods akin to proof-carrying code in
Sectionb.

An interactive proof systemdMR89 is a protocol that enables a verifier to be conviced
by a prover of some output via a series of message exchangdbe language of certifying
algorithms, their execution needs a bidirectional commatin between the checker and the
certifying algorithm. However, to be in accordance withitbguirements we pose onto certifying
algorithms, further simplicity constraints have to be adluced. If done so, they constitute an
extension of certifying algorithms that carries severat, ot all of the advantages of certifying
algorithms mentioned in Sectigh

5. Definitions and Formal Framework

We consider algorithms taking an input from a Xeind producing an output in a Sét The
inputx € X is supposed to satisfy a precondittap(x) and the input together with the outpue
Y is supposed to satisfy a postconditigp(x,y). Here¢ : X — {T,F } andy : X xY — {T,F }.
We call the paif¢,) an I/O-specificatioror an I/Gbehavior

In the case of graph bipartition for example, we have- { bipartite nonbipartite}. With
respect toX, we can take different standpoints. As an algorithm designa programmer using
a strongly typed programming language, we could tales the set of all finite undirected graphs.
Then¢(x) =T for all xe X andy(x,y) =T iff

X is a bipartite graph ang= bipartite or
X is a non-bipartite graph and= nonbipartite

As a programmer using Turing machines or an untyped progiaghlanguage, we would take
X as the set of all conceivable inputs, sa&yin the case of Turing machines or all memory
states in the case of the untyped programming language. iben=T iff x is the well-formed
representation of an undirected graph grid,y) = T iff the precondition is true and

X represents a bipartite graph ang bipartite or
X represents a non-bipartite graph and nonbipartite

In all examples considered in this paper, it is easy to cheo&tiner representations are well-
formed. We can therefore safely ignore the issue of inputesgmtation in most of our discus-
sions.

3For a predicat®: X — { T,F }, we use % satisfies?” or P(x) = T interchangeably. Similarly, we ux) = F
andx does not satisff interchangeably. In formulae we wriRx) for P(x) = T and—P(x) for P(x) = F.

21

We specifically allow the possibility that a pdix,y) of input and output satisfies the post-
condition, even thoughk does not satisfy the precondition. We will next define three& of
certifying algorithms: strongly certifying, certifyingnd weakly certifying algorithms. In the
case of a trivial precondition, i.ep,(x) = T for all x, the three notions coincide.

5.1. Strongly Certifying Algorithms

Strongly certifying algorithms are the most desirable kificalgorithm. On every input, a
strongly certifying algorithm proves to its users that itk&d correctly or that the user provided
it with an illegal input; it also says which of the two altetiva holds. More precisely, for any
inputx, it either produces a withess showing thabes not satisfy the precondition or it produces
an outputy and a witness showing that the péaky) satisfies the postcondition. For technical
reasons, in the first case, we want the algorithm to also pedn answering output, in addition
to the witness. We could have it return an arbitrary outpafioal it more natural to extend the
output setY by a special symbal and usel as an indicator for a violated precondition. We call
Y+ :=YU{L} theextended output seiVe useN to denote the set of witnesses.

A strong witness predicatier an 1/0-specificatiori¢, () is a predicate’ : X x Y- xW —
{T,F } with the following properties:

Strong witness property: Let (x,y,w) € X x Y x W satisfy the witness predicate. yf=1, w
proves thak does not satisfy the precondition ang i Y, w proves thatx, y) satisfies the
postcondition, i.e.,

(Y=L AZ' (X,y,W)) = —p(X) and

YWYy AR (xy W) = Y(x.y)

(2)

Checkability: For a triple(x,y,w) it is trivial to determine the valu®@ (x,y,w).
Simplicity: The implications 2) have a simple proof.

For the moment, we want to leave the checkability and the Igiitypproperty informal
notions. We invite the reader to check our examples agais8tdr notion of simplicity and
checkability. We discuss this further in Subsectioh

A strongly certifying algorithnfor I1/0-specification¢, ¢) and strong witness predicaté
is an algorithm with the following properties:

e It halts for all inputsx € X.
e Oninputx € X it outputs ay € Y+ and aw € W such that# (x,y,w) holds.

We illustrate the definition with two examples. The first exdens the test for bipartiteness
already used in the introduction. Heb¢js the set of all undirected graphs and the precondition
is trivial. Any graph is a good input. The output setis= { YES NO}. If the output is YES,
the witness is a 2-coloring, if the output is NO, the witnessan odd cycle.

Next, we give an example, where the precondition is nonaltivWe describe a strongly
certifying algorithm that five-colors any planar graph. Tigorithm does not decide planarity.

22

So X is the set of undirected graphs. We U3¢0 denote an input graph. The precondition is
thatG is planar. For a planar gragh = (V,E), the algorithm is supposed to color the vertices
of G with five colors such that any two adjacent vertices haverdistolors, i.e., the algorithm
constructs a mapping: V — {1,2,3,4,5} such that for any edge= (u,v) € E, c(u) # c(v).

For a non-planar graph, the algorithm will either prove mdanarity or provide a 5-coloring.
Non-planarity is proven by exhibiting a sequence of plaggrreserving transformations that
transform the input graph to a graph that is clearly nongra@onsider the following recursive
algorithm. IfG has at most five vertices, the algorithm returns a colorirggagume thas has
more than five vertices. I& has more thanr8— 6 edges, the algorithm declares the graph non-
planar. The witness is the number of edgess Has at most8— 6 edgesG must have a vertex
of degree five or less. Letbe such a vertex. i has degree four or less, the algorithm removes
v from the graph and calls itself d@ — v. Clearly, removal of a vertex preserves planarity. If
the recursive call returns a five coloring, it is easily exieth toG. If v has degree five, consider
the neighbors of. If the neighbors ofv form aKs, return it as a witness for non-planarity.
Otherwise, there must be two neighbors, gandy, that are non-adjacent. Remové&om the
graph, identifyx andy, and remove any parallel edges this may create. It is crtwiabserve
here that removal of and identification ok andy, does not destroy planarity. This is easy to
see by conceptualizing a planar drawing and performing tiexation there. If the recursive
call returns a five-coloring, it is easy to extend itG We use forx andy the color that was
given to their contraction in the smaller graph and we givelarcthat was not used on the
neighbors ofv for v. In this way, we either find a coloring of the input gra@hor a sequence
of planarity preserving reductions to a graphthat is clearly non-planar; either because it has
too many edges or because it containtgaFor any planar graph, the algorithm will produce a
five-coloring. It also will produce five-colorings of somemplanar graphs. For example, it will
color aKs. If the algorithm fails to find a five-coloring, it produces #&mess that the input graph
is non-planar. Note that the algorithm does not decide vérdtie precondition (that the graph
is planar) was met.

5.2. Certifying Algorithms

In some situations, we have to settle for less. The algorithiironly prove that either the
precondition is violated or the postcondition is satisfigdwill, in general, not be able to also
indicate which of the alternatives holds.

As an example, consider binary search. Its input is a numbad an arrayA[1..n] of num-
bers. The precondition states tisis sorted in increasing order. The search outputs YESSif
stored in the array, and it outputs NOzif not stored in the array. In the former case, a witness is
an index such thai\[i] = z, in the latter case, a witness is an indexich thai\[i — 1] < z < AJi];
hereA[0] = —c andA[n+ 1] = 4o for convenience. Binary search maintains two indicasdr
with A[¢] < z< Ajr] and/ < r. Initially, ¢ =0 andr = n+1. Aslong ag > ¢+ 1, it compares
zwith Alm|, wherem= [(r +¢)/2]. If z= Alm|, the algorithms stops. ¥ < Alm|, r is set to
m and the algorithms continues. 4f> Ajm|, ¢ is set tom and the algorithm continues. Observe
that binary search does not discover any violation of itc@nelition. In fact discovering all
violations would require linear time in general. This exdleads us to the definition of an
(ordinary) certifying algorithm:

23

A witness predicatéor an I/O-specificatiori¢, @) is a predicate? : X x YL xW — {T,F}
with the following properties:

Witness property: Let (x,y,w) satisfy the witness predicate. /=L, w proves thak does not
satisfy the precondition. if € Y, w proves thak does not satisfy the precondition g y)
satisfies the postcondition, i.e.,

(y=LAZ (x,y,w) = —¢(X) and

YW e A xyw) = —d()V @(xy)

3)

The second implication may also be writtenyasY A ¢ (X) A7 (X, y,w) = Y(X,Y).
Checkability: For a triple(x,y,w) it is trivial to determine the valu®@ (x,y,w).
Simplicity: The implications 8) have a simple proof.
In the case of binary searcK,is the set of pair¢A, z) whereA is an array of numbers ard
is a numbery is { YES,NO} andW is {0..n}. For (A, z) € X,y € Y andw € W, we have
y=YESAw=ie€{1l.n} Az=A[i]or

7 (%y,w) =T iff {y: NOAW=i € {0.n}AAfi] <z< Ali+1]

A certifying algorithmfor 1/0-specification¢, /) and witness predicaté” is an algorithm
P with the following properties:
e It halts for all inputsx € X.

e Oninputx € X it outputs ay € Y- and aw € W such that# (x,y,w) holds.

5.3. Weakly Certifying Algorithms

Sometimes, we have to settle for even lessvefakly certifying algorithnfior I/O-specification
(¢,) and witness predicaté” is an algorithm with the following properties:

¢ It halts for all inputsx € X satisfying the precondition. For inputs not satisfying fne-
condition, it may or may not halt.

e If it halts on inputx € X, it outputs ay € Y- and aw € W such that# (x,y,w) holds.

As an example, consider a naive randomized SAT-solver:givisn a formulax, of which it
is supposed to prove satisfiability. In other words our pnelitton is

¢ (X) = (xis a satisfiable boolean formyla

It tries random assignments until is has found a satisfyssggamentv. It then outputy = YES,
together withw as a witness. Checking the satisfiability»ois trivial; w proves it. This algo-
rithm is certifying, however since it does not halt on urs&&ble input clauses it is only weakly
certifying. A more sophisticated example is the random Sélirer analyzed by Moselos09,
which finds satisfying assignments of certain sparse SAlisgs in polynomial time.

24

Theorem 2. Let (¢,) be an I/O-specification. A certifying decision algorithm b plus a
weakly certifying algorithm for behavid,) can be combined to a strongly certifying algo-
rithm for behavior(¢,).

Proof: Let x be any input. We first run the certifying decision algorithan §. It returns
y=¢(x) € {T,F } and a witnessv certifying the correctness of the outputylis F, we returnL
andw as a witness for¢ (x). If yis T, we run the weakly certifying algorithm for 1/0-behavior
(¢,) onx. Since¢(x), the algorithm returns g with ¢/(x,y’) and a witnessV certifying the
correctness of the output. We retyf'randw’. O

5.4. Efficiency

We call a certifying algorithnP efficientif there is an accompanying checkey such that
the asymptotic running of botR andC is at most the running time of the best known algorithm
satisfying the I/O-specification. All examples we have tiedaso far are efficient. We now give
an example, where no efficient certifying algorithm is knowhe 3-connectedness problem asks
whether a graph may be disconnected by removing two vertigasar time algorithmsHT73,
MR92] for this problem are known, but none of them is certifying.

Certifying that a graph is not 3-connected is simple, it safito provide a s& of vertices,
|S| < 2, such thaz\ Sis not connected. To certify that their removal disconnéutsgraph we
can, for example, use the algorithm that certifies the caedespmponents (see Subsectivd).
Thus, we now focus on 3-connected graphs and descritl@(af) algorithm that certifies 3-
connectivity (a different certifyingd(n?) algorithm can be found ingch1Q). We omit details
on how to find a separating set during the execution of therilhgo, in case the input graph is
not 3-connected. As certificate for 3-connectivity we wileua sequence of edge contractions
resulting in theky, the complete graph on 4 vertices. Témntractionof an edgee = xy of a
graphG is the graphG/e obtained by replacing andy with a single vertex, whose neighbors
areN(X)UN(y) \ {x,y}. We call an edge of a 3-connected graph contractiblef the contracted
graphG/eis 3-connected. A separating pair is a pair of vertices whes®val disconnects the
graph.

Lemma 4. Let e= (x,y) be an edge of a simple graph G whose end-vertices have a degaee
least3. If G/e is 3-connected, then G is 3-connected.

Proof: Since contractions cannot connect a disconnected graphoriinal graphG is con-
nected. There are no cut-verticesGnas they would map to cut-vertices@ye.
Any separating pair o6 must contain one of the end-vertices of e@g®therwise the pair

is also separating iG/e. It cannot contain botlx andy, otherwise the contracted vertey is

a cut-vertex inG/e. It suffices now to show that u, with u € V(G) \ y is not a separating pair.
Suppose otherwise, then the graph- {x,u} is disconnected, but the gra@ {x,y,u} is not.
Thus{y} is a component o6 — {x,u}. But this is a contradiction singehas degree at least 3
in G. OJ

25

To certify the 3-connectivity of a grap@, it thus suffices to provide a sequence of edges
which, when contracted in that order, have endpoints witegrek of a least 3 and whose con-
traction results in &4. We call such a sequenceélratte sequencéVe now focus on how to find
the contraction sequence, given a 3-connected graph.

The O(n?) algorithm needs three ingredients: First we require@e?) algorithm by Nag-
amochi and IbarakiNlI92] that finds a sparse spanning 3-connected subgra@wath at most
3n— 6 edges. Second we require a linear time algorithm for 2-ectivity. Third we require a
structure theorem, that shows how to determine a small datelset of edges among which we
find a contractible edge.

Theorem 3 (Krisell [Kri02]). If no edge incident to a vertex v of a 3-connected graph G is
contractible, then v has a least four neighbors of degree ldchveach are incident with two
contractible edges.

Consider now a vertex of minimal degree in a 3-connected graph. If it has degresetht
cannot have four neighbors of degree three and hence mustamawmcident contractible edge.
If it has degree four or more, it cannot have a neighbor of eegnree (because otherwise, its
degree would not be minimal) and hence must have an incidenitactible edge. Also note that
an edgexy in a 3-connected graph is contractibleGf- {x, y} is 2-connected.

We explain how to find the firgi/2 contractions in tim@©(n?). By repeating the procedure
we obtain an algorithm that has overall a running time©@?).

First use the algorithm by Nagamochi and Ibaraki92]. The resulting graph hasn3- 6
edges. Thus while performing the finsf2 contractions, there will always be a vertex with
degree at most-2-3 = 12. Choosing a vertex of minimal degree, we obtain a set ofast 12
candidate edges, one of which must be contractible. To testher an edgry is contractible,
we check whethe® — {x,y} is 2-connected with some linear time algorithm for 2-conivég.

Theorem 4 ([Sch1(). A Tutte sequence for a 3-connected graph can be found in tim& O

It remains a challenge to find a linear time certifying aljom for 3-connectivity of graphs.
A linear time certifying algorithm for graphs 3-connectywof Hamiltonian graphs was recently
found EMS1(; it assumes that the Hamiltonian cycle is part of the input.

Efficiency and Usefulnesskor some problems, e.g., testing bipartiteness, maximuwmtatch-
ings, and min-cost flows, the best known algorithms arefgery and the cost of checking the
witness is negligible compared to the cost of computing dr $uch programs, it is best to in-
tegrate the checker into the program. For other problengs, planarity testing, certification
increases running time by a non-negligible multiplicafizetor (more than 2 and less than 10).
Finally, there are problems, such as triconnectivity, \ehbie best known certifying algorithm
has worse asymptotic complexity than the best known notiRgag algorithm. Even for the
latter kind of problem, certification is useful for two reaso First, one can use the certifying
version to generate test instances for the non-certifyargion, and second, for small instances
the slow certifying version may be fast enough.

26

5.5. Simplicity and Checkability

The definition of a certifying algorithm and its variantsahve two non-mathematical terms
that we have not made precise: simplicity and checkabilityey guarantee that it is “easy to
check” whether a withess shows that an output is correct for a given input. We now etzieo
on these terms.

Checkability:. Givenx, y, andw, we require that it is trivial to determine whethgf (x,y, w)
holds. We list a number of conceivable “formalizations” b&ftng trivial to determine”.

e There is a decision algorithm fo#” that runs in linear time.

e # has a simple logical structure. For example, we might reqgthatx, y, andw are
strings, that#” is a conjunction ofO(|x| + |y| + |w|) elementary predicates and that each
predicate tests a simple property of relatively short surigs.

e There is a simple logical system, in which we can decide wdrefi(x,y, w) holds.

e The correctness of a program decidivig x,y,w) is obvious or can be established by an
elementary proof.

e We can formally verify the correctness of the program dejd? (x,y, w).

Most witness predicates discussed in this article sati$fgedinitions above. In Sectiof we
further investigate checkers, i.e., programs that detegrtiie value of a witness predicaté.

Simplicity:. The witness property is easily verified, i.e., the (equinglenplications

VXYW A (XY, W) = P(XY) (4)
vx7y _|L,U<X,y) %/EWWO(?y?W) . (5)
have an elementary proof. Here, we assumed that the preimondi trivial. For the case of a
non-trivial precondition, either stateme) or (3) should have an elementary proof (the former
in the case of a strongly certifying algorithm, the lattettia other cases). We find that all withess
predicates discussed in this article fulfill the simpligipperty.

Observe that we make no assumption about the difficulty @fbdishing the existence of a
witness. In the case of a strongly certifying or certifyingaithm, this would be the statement

VX 3Iy,w # (X, L,W) VA (XY, W) .
In the case of a weakly certifying algorithm this would be st@ement
X 9(x) = (Fy,w Z (X Lw)VF(Xy,w)).

Indeed, the existence of witnesses is usually a non-tnagthematical statement, and its com-
putation a non-trivial computational task. For examples iton-trivial to prove that a non-planar
graph necessarily contains a Kuratowski subgraph (Subgezts) and is non-trivial to prove

27

that a maximum matching can always be certified by an oddesetr{Subsectio.6). Fortu-
nately, a user of a certifying algorithm does not need to tstdad why a witness exists in all
cases. He only needs to convince himself that it is easy tigreze witnesses and that a witness,
indeed, certifies the correctness of the algorithm on therginstance.

The “definition” above rules out some obviously undesiraitieations:

1. Assume we have a complicated progrBrfor 1/0-behavior(¢,). We could takewv as
the record of the computation 8fon x and define# (x,y,w) as ‘w is the computation of
P on inputx andy is the output of this computation”. P is correct, ther#” is a witness
predicate. This predicate certainly satisfies the chetikalequirement. However, it does
not satisfy the simplicity requirement, since a proof of witness property is tantamount
to proving the correctness &t

2. Another extreme is to defirng (x,y,w) as “@(x,y)”. For this predicate simplicity is triv-
ially given. However, deciding” amounts to a solution of the original problem.

As our definition is not and cannot be made mathematicaliggent, whether an algorithm
should be accepted as certifying is a matter of taste. Howeéwee drop our non-mathematical
requirement of “easiness to check”, we can ask formal queston the existence of certifying
algorithms.

Question 1. Does every computable function have a certifying algorithm

A more stringent version of this question asks, in additedmgut the resource requirements
of the certifying program.

Question 2. Does every program P have an efficient strongly certifyingetifying or weakly
certifying counterpatrt, i.e., a counterpart with essehyishe same running time?

More precisely, leP be a program with 1/0-behavigp,). An efficient strongly certifying
counterpart would be a progra@hand a predicat®#” such that

1. W is a strong witness predicate fap, g).
2. On inputx, programQ computes a tripléx,y, w) with 7 (x,y,w).

3. Oninputx, the resource consumption (time, spacefdadn x is at most a constant factor
larger than the resource consumptioriPof

For an ordinary certifying counterpart, we would replacers witness predicate by witness
predicate in the first condition. For a weakly certifying aterpart, we would additionally re-
place the second condition by the following:Qfhalts onx, it computes a tripléx,y,w) with

(x,y,w), and if ¢ (x) thenQ halts onx. We address these questions in the next two subsections.

28

5.6. Deterministic Programs with Trivial Preconditions

We show that every deterministic program that has a triviatpnditiong (x) = T for all x
can be made certifying with only a constant overhead in motime. This sounds like a very
strong result. It is not really; the argument formalizes itteition that a formal correctness
proof is a witness of correctness. The construction showses@semblance to proof-carrying
code NL96].

Let ¢ be a postcondition and I& be a program (in a programming langudgevith well-
defined semantics) with 1/0O-behavifF, /). We assume that we have a proof (in some formal
systemS) of the fact thaP realizes(T, ¢), i.e., a proof of the statemeéht

vx P halts on inpu and/(x, P(X)) . (6)

We usew, to denote the proof.

We extendP to a programQ which on inputx outputsP(x) and a witnessv = (W, Wy, Ws)
wherew; is the program tex®, w, is as above, andis is the computation oP on inputx.

The witness predicat# (x,y,w) holds if w has the required format, i.en = (W, Wz, W3),
wherew; is the program text of some prograPnws is a proof inSthatP realizes 1/0-behavior
(T,), ws is the computation dP on inputx, andy is the output ofnvs. The following statements
show that algorithn@ is an efficient certifying algorithm:

1. W is a strong witness predicate for 1/0O-behavidr g):

e Checkability: The check whether a tripléx,y,w) satisfies the witness predicate is
easy. We use a proof checker for the formal sys8&tm verify thatws is a proof for
statement®). We use an interpreter for the programming langulage verify that
ws is the run ofP on inputx and thaty = P(x).

e Strong witness property and Simplicitfhe proof of the implicatior?Z’ (x,y,w) =
Y(x,y) is elementary: Assum#’ (x,y,w). Thenw = (w1, wp,w3), wherew; is the
program text of some progra®, w, is a proof (in systen®) that P realizes 1/O-
behavior(T,), ws is the computation oP on inputx, andy is the output ofws.
Thusy = P(x) and/(x, P(x)).

2. For every inpuk algorithmQ computes a witness with 7 (x, P(x),w). This follows from
the definition ofQ.

3. The running time of) is asymptotically no larger than the running timeRof The same
holds true for the space complexity. Observe QQatroduces a large output; however, the
workspace requirement is the same asfolrhe same is true for the checker described in
the checkability argument.

We summarize the discussion.

4We useP(x) to denote the output ¢t on inputx.

29

Theorem 5. Every deterministic program fdfO-specification(T,) has an efficient strongly
certifying counterpart. This assumes that a proof ®ri(a formal system is available.

We admit that the construction above leaves much to be dedires not a practical way of
constructing certifying algorithms. After all, certifygnprograms are an approach to correctness
when a formal correctness proof is out of reach. A frequeanttien to TheoremS and7 is that
they contradict intuition. In fact, we also started out vilagito prove the opposite. In an attempt
to prove that some algorithms cannot be certifying withassl of efficiency, we discovered
Theoremb. We come back to this point in Sectigq.

However, the construction is also quite assuring and giveeg moral support. Every deter-
ministic program can be made certifying with only a constass in time and space&o, when
searching for a certifying algorithm we only have to try hambugh; we are guaranteed to suc-
ceed. The construction also captures the intuition that certificais no harder than a formal
correctness proof of a program.

5.7. Non-Trivial Preconditions

For non-trivial preconditions the situation is more subtl&e will see that there are 1/0-
behaviors that can be realized by a non-certifying algoriblut cannot be realized by a certifying
algorithm. However, every algorithm can be made weaklyifyary.

A Program without a Certifying CounterpartOn an inputx not satisfying the precondition, a

non-certifying program may do anything. In particular, iayrdiverge or return nonsense. The
requirements for a certifying algorithm are more stringedh inputx, it is supposed to either

return ay and a witness which proveg(x,y) V —¢(x) or output L and a witness which proves

¢ (x). We will next show that some I/O-behaviors resist certifaat

Theorem 6. Consider the following task. The input consists of two giis and x. The pre-
condition states that the string is the description of a mgrmachine which halts on x. The
postcondition states that the output is the result of rugrsmon x. This behavior can be realized
algorithmically, however it cannot be realized by a ceitifyalgorithm.

Proof: The behavior is easy to implement, take any universal Tumniaghine. It is even con-
ceivable to prove the correctness of the implementatioterAsdil, universal Turing machines are
quite simple programs.

However, there is no certifying algorithm implementingstiyehavior. What would a cer-
tifying algorithm have to do on inpug andx? It either outputsl. and proves thas is not the
description of a Turing machine halting anor it provides an outpw, and then proves that
is not the description of a Turing machine haltingroar that the output of the Turing machine
described by onxisy. By standard diagonalization we can show that such an atgoiiwhich
would essentially have to solve the halting problem) caemxgdt: Supposeél (s,X) is a program
that always halts, and, wheneweencodes a Turing machine halting on inpuwvith some out-
put, thenH outputs the same output. Consider the progRnthat on inputs' callsH(s,s)

30

and outputs something differing frohi(s,s'). SinceH always haltsP always halts. Ifpis a
description ofP thenP(p) # H(p, p) = P(p), a contradiction. O

Note that there exists a weakly certifying algorithm thdt/es the problem. The reason is
that weakly certifying algorithms do not have to halt whea fitecondition is not fulfilled. In
fact every program can be made weakly certifying, as we sheous n

Every Program can be Made Weakly Certifyingle modify the argumentation of Subsec-
tion 5.6. Let (¢,) be an I/O-specification and IBtbe a program (in a programming language
L with well-defined semantics) with I/O-behavigp,). We assume that we have a proof (in
some formal syster8) thatP realizes(¢,), i.e., a proof of the statement

¢(x) = P haltsoninpukandP(x) Y and

if P halts onx theny(x, P(x)). (7)

We usew, to denote the proof.

We extendP to a progran® which on inputx does the following: IfP halts on inputx, Q
outputsP(x) and a witnessv = (wq, W», W3) wherews is the program tex®, ws is as above, and
wjz is the computation o on inputx. This construction is akin to proof-carrying codeL[96,
Nec91.

The witness predicat# (x,y,w) holds if w has the required format, i.en = (W, Wz, Ws),
wherews is the program text of some prograPyw, is a proof for), ws is the computation
of P on inputx, andy is the output ofwz. The following statements show th@tis an efficient
weakly certifying algorithm:

1. W is a witness predicate for I/O-behavigh,):

e Checkability: The check whether a triplg,y,w) satisfies the witness predicate is
again easy. We use a proof checker for the formal sySe¢mverify thatw, is a
proof for statement?). We use an interpreter for the programming languade
verify thatws is the run ofP on inputx and thaty = P(x). Note that this checker
always halts.

e Witness property and Simplicithissume? (x,y,w). Thenw = (wy, W, ws3), where
w is the program text of some progrdPws, is a proof for), ws is the computa-
tion of P on inputx, andy is the output ofws. Thusy = P(x) and either-¢ (x) or
Y(x,P(x)). This proof is elementary.

2. For every inpuk with ¢(x), algorithmQ computes a witness with % (x, P(x),w). This
follows from the definition ofQ.

3. The argument from Subsectiérb applies.

We summarize the discussion.

31

Theorem 7. Every deterministic program for I/O-specification has aficegnt weakly certifying
counterpart. This assumes that a proof f@y (n a formal system is available.

Theoremb follows as a corollary by settingg = T. The remarks following Theoremapply
also to the construction of this paragraph.

5.8. An Objection

Several colleagues suggested to restrict the length oflddmputation time required to
check the witness, e.g., to a polynomial in the length of tipui. Following the suggestion
would have the undesirable consequence that only probleiBMi coNPcould have certifying
algorithms.

Lemmab. Let f: X — {0,1} and assume that f has a witness predicate W with polynomial
size witnesses and that W can be evaluated in polynomial Timen fe NP coNP.

Proof: We guess the outpytand the witness and comput&V(x,y,w). In this way, we obtain
a polynomial-time nondeterministic algorithm for the yas-well as the no-instances bf Thus
f € NPncoNP. O

There is no reason to restrict certification to problem RN coNP. In fact, certification has
been used successfully to verify optimal solutiond\f&-complete optimization problems; see
Subsectior®.3. Even more so, the concept of certifying algorithms is aygtile to the whole
spectrum of complexity classes.

6. Checkers

A checkerfor a witness predicat#” is an algorithnC that on inputx, y, w) returns# (x,y, w).
Figurel in the introduction compares the 1/0 behavior of a non-fyenty program with a certi-
fying program and demonstrates how a checker is used toetisatrthe witnesw certifies that
yis the correct output for inpst When designing checkers, there are several aspects tlzaewe
interested in:

1. Correctness: Checkers must be correct.

2. Running time: Ideally, the running time of a checker igénin the size of its input, i.e.,
the size of the triplgx,y, w).

3. Logical complexity: Checkers should be simple programs.

4. Required randomness (see Secti@i Checkers may use randomness. Most users will
prefer deterministic checkers over randomized checkers.

Correctness is the crucial issue. The concept of certifgiggrithm relies on our ability to write
correct checkers. What approaches do we have? We may takeatpmatic approach or use
formal verification for checkers. We discuss these optiax.n

32

Problem LoC(P) LoC(C) Reference
Max Cardinality Matching 280 26 MIN99, Section 7.7]
Planarity 900 130 NIN99, Section 8.7]

Table 1: The length (in lines of code (LoC)) of two modules #melcorresponding checkers in LEDA. The second
line refers to the module that computes maximum matchingsaphs. The module has 280 LoC, the checker has
26 LoC. It verifies that an odd-set cover proves the optipailfta matching in a general graph, see Secfidn

The third line refers to the planarity test module. It congsutombinatorial planar embeddings of planar graphs
and exhibits Kuratowski subgraphs in non-planar graphshasd®00 LoC. The corresponding checkers verify that
a combinatorial embedding satisfies Euler’s relation, i@ 2.6, and that a list of edges in a graghforms a
Kuratowski subgraph. The former checker hat 35 LoC, thedathecker has 95 LoC and is the longest checker in
LEDA.

6.1. The Pragmatic Approach

The pragmatic answer is that the task of checking a witnessldibe so simple that the
guestion of having a correct checking program is not reailysaue. The checking program is
short and has a simple logical structure and hence everygroger should be able to get it
right. LEDA followed the pragmatic approach; Taldleshows the length (in lines of code) of
some checkers in LEDA.

What kind of primitives can one use in a checker? We have tonasghat there is a basic
layer of correct primitives, e.g., simple data structurashsas linear lists, graphs, union-find and
simple algorithms such as connectivity of graphs and miningpanning trees.

We can also use non-trivial primitives as long as they aréfgerg. Assume that you want to
use a functiorf in a checkefC and that you have a certifying algorith@y and a correct checker
Cs for it. When you need to computeX) in C, you callQs and obtainy’ and a witnessv.
Then you us€; to check the tripléx’,y’,w'). If C; accepts the triple, you know thgtis equal
to f(X') and you proceed. IE; rejects the tripleC gives up and rejects.

The checker could also require that the triptey’,w') is provided to as part of the witness.
This would simplify the checker and is useful, whenever theoker has to operate under limited
resources or when one wants to formally verify the checker.

6.2. Manipulation of the Input

The checker uses the input data. Since a program could tamifhethe input, precautions
must be taken, to ensure that the witness is checked againet@anipulated input. Thisissue is
also addressed in Figuten the introduction, which shows that the checker acces$segriginal
input.

As an example of a common pitfall, observe that in order tackibe output of a sorting
algorithm, it does not suffice to verify that the output listsorted. Rather, one also needs to
check that the output list contains the same elements agpheélist.

Two methods can be applied to resolve the issue with martipalaf the input. In the first
method the checker withholds a private copy of the input, hictvthe certifying algorithm has
no access to. When done so, the withess has to be written iy toatallows for it to be checked
using the copy of the input.

33

In the second method the checker prevents (or monitorspttias of the input. Recall that
in the case of binary search (see Subsedii@nthe second method has to be applied to prevent
dramatic increase of the running time. In the case of sartftgrations of the input may for
example be monitored by using only a trusted version of swap Sectioril).

6.3. Formal Verification of Checkers

Since checkers are so simple, we might be able to prove themcto There is an obvious
objection. Only programs written in a programming languagg a formally defined semantics
can be proven correct, but most algorithms are written iglages, e.gC, C++ or Java, whose
semantics are only informally defined.

However, there is no need to write the checker in the sameilg®as the program comput-
ing the solution and the witness. We may write the checked@amguage that supports verifica-
tion. Since checkers are simple programs, this should natlig obstacle. Also since the time
complexity of the checking task is frequently much smalkem the complexity of computing
the solution, the efficiency of the language is not an obstacl

We next turn to a discussion of the advantages of certifyiggrahms.

7. Advantages of Certifying Algorithms

Assume that we have a (strongly, ordinary, weakly) certigyprogranP for an I/O-behavior
(¢,) and a correct check€. What do we gain?

Instance Correctnessif the checker accept,y, w), w proves that either@(x) or ¢(x,y). In

the case of a strongly certifying algorithm, we also knowatalternative holds. We are certain
that P worked correctly on the instanse We emphasize that we do not know that the program
will work correctly for all inputs, we only know it for instare x. If the checker reject&xy, w),

w is not a valid certificate and we know thBterred either in the computation gfor in the
computation of the certificats.

Testing on all Inputs:.Testing is the most popular method to ensure correctnesspémenta-
tions. The implementation is run on inputs for which the eotresult is already known and only
released if the correct output is produced for all test iaplihe standard objection to testing is,
of course, that it can only prove the presence of errors ahthe@bsence of errors. There is also
a second objectiorone can only test on inputs for which the answer is alreadywn&Vhat if
your algorithm is the first for a certain task and you know thsveer only on a very small set
of inputs or if your algorithm is much more efficient than alépious algorithms and hence you
can run the other algorithms only for small inputs? Usingifyeéng algorithms, we can now test
our program on every inputand not just on inputs for which we already know the right agrsw
by other means. We can even test our program whenever it csiede

Confinement of Error:Whenever a certifying program fails on an input, the checkéches the
error. In a system consisting of certifying componentspmrare caught by the failing module
and do not spread over to other modules. This greatly siraplifie task of finding the source of
the error.

34

More Effective Program Developmenfrogram modules are usually incorrect or incomplete
during much of their development phase. Confinement of ésrparticularly important during
this phase.

Trust with Minimal Intellectual Investment\Which intellectual investment does a user have to
make in order to trust a certifying program? Not much. Fhisthas to understand, why a witness
proves the correctness of the program on a particular instaand second he has to verify that
the checker is correct.

Remote ComputationCertification allows a user to locally (e.g., on a mobile deyiverify an
answer that has been computed at some distant location ¢e.g. fast remote server), even if
the software used for computation is untrusted, or the ablamnwhich the result is transferred
is noisy. This allows the usage of untrusted fast remoteesgrv

Verified Checkers: As we will see in the examples, checkers are frequently splsinthat their
formal verification is feasible. Also, they are frequentty efficient compared to the program
itself, that we may be willing to write them in a less efficipnbgramming language which eases
verification.

Black-Box Programs:In order to develop trust in a certifying program there is eeadto have
access to the source text of the program. It suffices to hasesado the source of the checker
since only its correctness needs to be verified. In other sydhek intellectual property can be
kept secret and yet trust can be developed.

This argument is somewhat compromised by our theoreticastoactions in Sectiorb.
There, code (either in source or in binary form) and corres$nproof are part of the withess
and cannot be kept secret. Zero-knowledge proofs mighwvatiavercome this problem.

Tamperproofness:Certifying algorithms are resistant to tampering. If al&ifx,y,w) does not
pass the witness predicate, the checker rejects it. If isfsad the witness predicate despite
the fact that the program was tampered with, the user rezaiv®rrect result and does neither
notices nor cares about the tampering.

Efficiency of Checking:In all examples discussed in this paper, the checker runsmltnear
in the size of the triplé€x,y,w) and, in the case of algorithms with super-linear runningettire
length ofw is sublinear in the running time of the algorithm.

On the contrary, a program that only returns its answer atidimgpelse cannot be checked
in sub-computing time or space (at least if its answers lggom some finite set). Otherwise, we
would simply present the input with all possible answerhtdhecker. Exactly one answer will
be accepted and so we return it as the answer to the input.

Certifying Algorithms, a Challenge for AlgorithmicsMost existing algorithms are non-certifying.
It is a challenge for algorithmics to find certifying algdmibs which are as efficient as the ex-
isting non-certifying ones. The design of certificates frextly leads to deeper insight into the
problem structure.

35

Better Programming:.Turning a correct algorithm into a correct program is anreprone task.
An algorithm is the description of a problem solving methoténded for human consumption.
It is usually described in natural language, pseudo-codghematical notation or a mixture
thereof. A program is the description of a problem solvinghnd intended for execution by a
machine. It is written in a programming language and usuallgh more detailed than the al-
gorithm. Certifying algorithms are easier to implementreotly than non-certifying algorithms
because they can be tested on all inputs.

Practical Experience:.Mehlhorn and Naher adopted the concept of certifying allgors a
design principle for the LEDANIN99, LED] library of efficient data types and algorithms,
the name “certifying algorithm” was coined ilKMMS06]. They started to build LEDA in
1989 MN89, NM9Q]. They implemented conventional algorithms and some chéakasser-
tions and post-conditions, and tested extensively. Nbetss at least two major programs were
incorrect when first released: the planarity test, see ®tibse2.6 and Sectior8, and the con-
vex hull algorithm in arbitrary dimensional spaces, sediSe®.1 In the attempt to correct the
errors in these programs, Mehlhorn and Naher adopted theepd of certifying programs and
reported about it iNYINU97, MN98]. For the LEDA book MN99], many algorithms were reim-
plemented and a large number of the algorithms in LEDA werdeareertifying, in particular,
the graph and geometry algorithms. However, there ardatijé parts which are non-certifying,
e.g., all algorithms working on the number types of LEDA.

Hidden Assumptions:A checker can only be written if the problem at hand is rigeigule-
fined. Mehlhorn and Naher noticed that some of their spetifios in LEDA contained hidden
assumptions which were revealed during the design of thekelneFor example, an early version
of the biconnected components algorithm assumed that #phgontains no isolated nodes.

8. General Techniques

There are several general techniques, that facilitate éseyd of certifying algorithms. We
start their discussion by considering reductions thatgxeswitnesses.

8.1. Reduction

Reduction is a powerful problem solving method. In orderdlve a problem, we reduce it
to a problem for which we already know a solution. More prelgiswe want to solve problem
P using an algorithn®’ for a problemP’ and two transformations. Transformatidériranslates
problem instances of problef into problem instances of probleR{ which are then solved
by means of algorithr@'. The result ofA' is translated back to an output Bfby means of a
transformatiof g. Thusf : X — X/, g: X x Y’ — Y andA(x) = g(x, A'(f(x))) is an algorithm
for P.

In this section, we show how to use reductions in the contieogdifying algorithms. We will
first discuss an example — a reduction of maximum cardinblgrtite matching to maximum

SThis transformation has inpugg the output o, andx, the instance oP to be solved. The inputis needed
so thaty’ can be interpreted for it.

36

flow — and then give a general formulation. The main additioequirement is the availability
of a transformation that transforms witnessesHointo witnesses foP.

8.1.1. An Example

A matching in a graph is a set of edges no two of which share dp@nt. A maximum
cardinality matching or maximum matching is a matching oxmmum cardinality. A node
coverC is a set of nodes covering all edge<3ni.e., for each edge @b at least one endpoint is
in C. The following Lemma is a special case of the discussion tii&e2.5.

Lemma 6. Let G be a bipartite graph, M be any matching in G, and C be ardermover. Then
IM| <|C|. If [M| = |C|, M is a maximum cardinality matching in G.

Proof: We define a mapping from to C. For any edge in the matching at least one endpoint
must be in the node cover. We can therefore map any edge indtafiimg to a node in the cover.
This mapping is injective, since edges in a matching do nateseandpoints. Thus/| < |C|. O

A network is a directed grap@ = (V, E) with a nonnegative capacity functi@ap defined
on the edges and two designated noslasdt. A flow is a functionf defined on the edges that
observes the capacity constraints, i.es ®(e) < cap(e) for any edgee, and observes the flow
conservation constraints, i.e., for any noddifferent froms andt, the flow out ofv is the same
as the flow intov, i.e.,excesfv) = Y ge—(yw) F(€) = Yee—(uv) f(€) = 0. The value of the flow is
the excess 0§, i.e.,val(f) = exces&s). An (s;t)-cut (S T) is a partition ofV into two setsS
andT suchthase SteT,V=SUT andSNT = 0. The capacity of a cutS,T) is the total
capacity of the edges going froBto T, i.e,cap(S,T) = S ecsxT CAP(E).

Lemma 7. Let G be a network with source s and sink t, f @t)-flow and(S,T) an (s,t)-
cut. Then valf) <cap(ST). If val(f) =cap(ST), then f is a flow of maximum value and
f(e)=cap(e) forallec Sx T and f(e) =0forallec T x S.

Proof: We have

val(f) = excests)

= Zsexces)
S

:Zs< RICEEDY f(E))
VES \ ge=(v,w) ge=(uv)
— f(e) — f(e)

ecSxT ecl xS

<cap(ST).

37

U w U w

Figure 9: The figure on the left shows a bipartite gr&la maximum matchiniyl (= the heavy edges) and a node
coverC (= the filled vertices). The figure on the right shows the csgpoding flow network (all edges are directed
from left to right and have capacity one), a maximum flow (=tieavy edges), and &ds,t)-cut (S T); Sconsists

of the filled vertices. The maximum flow and tligt)-cut induce a maximum matching and a node cover. The
matching consists of the saturated edges@udnsists of the vertices i NU plus the vertices iltNW plus the
vertices inU N Sthat have an edge to a verteximWw.

The reduction from maximum bipartite matching to maximumvfis as follows: LetG =
(UUW,E) be a bipartite graph. We construct an auxiliary gr&@hvith node se¥ =U UW U
{s,t}, wheresandt are new nodes. We have edges freto all nodes irlJ, direct the edges in
E fromU toW, and edges from all nodesW tot. All edges have capacity one.

Let fo be an integral maximum flow. We construct a matchigin G from it by putting
into Mg precisely the edges 18 that carry a flow of one.

Lemma 8. Mg is a matching andMp| = val(fo).

Proof: Since the edges fromto any node iJ and from any node iWV tot have capacity one
and our flow is integral, the flow out of a nodelinis at most one and the flow into a nodé/h
is at most one. Thullg is a matching an@Mp| = val(fp). O

We next show how to translate cuts into node covers. FigiQi#ustrates this construction.
Let (S T) be an(s,t)-cut. We define

C:=(TnU)u(SNW)u{u]|thereis an edge= (u,w) € (SNU) x (TNW) }.
Lemma 9. If (ST) is an(s,t)-cut, then C is a node cover.

Proof: Lete= (u,w) be any edge of our bipartite graph. If eithee T orw € S, eis clearly
covered. So assumes Sandw € T. Theneis covered by the third term in the definition ©f
ThusC is a node cover. OJ

38

Figure 10: The figure demonstrates how to obtain a node cower & cut(S T). The cover contains the nodes
in TNU, SNW and the source nodes of the edge$3mU) x (T "W). Every edge has an endpoint in a shaded
region, which shows that the set of vertices in the shadedmeg a node cover.

Lemma 10. Let (S, To) be an(s,t)-cut with val fp) = cap(S, To) and let My and G be the
corresponding matching and node cover. Theg| = |Co|.

Proof: We have

‘Mo‘ :Va|(fo)
= cap(S, To)
= [SNW|+|ToNnU|+ [{e= (uw) € (SSNU) x (ToNW) }|
<|SNW|+|ToNU |+ |{u] thereis an edge= (u,w) € (UNS) x (WNTp) }|
= |Col,

where the second equality follows from the fact that theee|&NW| edges(w,t) in S x To
and|ToNU| edges(s,u) in S x Tp and the inequality follows from the fact that all edges in
S x Tp are saturated and hence counting endpoints iis equivalent to counting the edges
in (SSNU) x (ToNW). O

The example demonstrates how to design a certifying alguaritia a reduction to a differ-
ent problem, for which a certifying algorithm is already ko After we describe the general
approach to reductions, we explain why and how the previgamele is a special case.

39

8.1.2. The General Approach
We now describe a general approach for obtaining certifgiggrithms via reductions.

Theorem 8. Let (¢,) and (¢, ') be 1/O-specifications and le#” and %" be correspond-
ing (strong) witness predicates. Let Be a (strongly, weakly) certifying algorithm for 1/O-
specification(¢’, ¢') and witness predicat®’’. The translations f X — X/, g: X xY' =Y,
h: X xY' xW' — W transform inputs, outputs, and witnesses respectivelume further

P(E(X),Y.W) = #(x9(xY),h(xy.w)). (8)
If A’ is weakly certifying, also assume

() = ¢(f(x).

Then the following algorithm A is a (strongly, weakly) ciitig algorithm for I/O-specification
(¢,) and witness predicat®’ .

1. translate x into x)
2. run A on f(x) to obtain y and w

3. translate yinto y=g(x,y) and w into w= h(x,y,w) and return(y,w).

Proof: Assume first tha¥” and %’ are (strong) witness predicates afids a (strongly) cer-
tifying algorithm. Letx € X be arbitrary and lex' = f(x) be the corresponding input fa¥.
Algorithm A’ terminates orx’ and returns a paity,w') with #”/(x,y,w). Then# (x,y,w)
by implication §). ThusA is a (strongly) certifying algorithm for I/O-specificatidg,) and
witness predicat®’ .

We come to the case that is weakly certifying. Letx € X satisfy$(x). Then¢’(x') and
henceA’ terminates and returns a p&jif,w'). ThusA terminates an# (x,y,w). O

It may seem strange that the implicatigiix) — ¢(f (X)) is only needed in the case of
weakly certifying algorithms. Note however, that even iisttase, it is only used to conclude
thatA’ terminates ox'. Since (strongly) certifying algorithms are total, th&imhination is given
for free. So assume théttranslates an inputwith ¢ (x) into anx’ with —¢’(x') andA’ produces
awitnessv that proves that' violates the precondition. In such a situation, it is urlijkbat one
can prove the implicatio”(f(x),y,W) = #(x,9(x,Y),h(x,y,w)). It is not impossible,
e.g., if the 1/O-specificatiofig,) is trivial.

Let us illustrate Theorer@ on our previous example. We have
e X = the set of all bipartite graphGs.
e X’ =the set of all directed networkd’ with designated nodesandt.

o f translates a bipartite grafgh= (U UW, E) into a directed network.

40

e Y = the set of matchings i® (alternativelyY = all subsets oE).
e Y’ = the set of integra(s,t)-flows inG'.

o Y/(G,) =Tiff f'isamaximum flow inG'.

e Y(G,M) =T iff M is a maximum matching if.
e W' = the set of(s,t)-cuts.

e W = the set of node covers (@.

o W/ (G (S, T) =Tiff val(f') =capS,T).
e #(G,M,C)=Tiff IM|=IC|.

e gtranslates an integral flow into a matching.
e Lemma8 proves thay does as required.

e htranslates afS T)-cut into a cover.

e Lemma9 shows that does as desired.

e LemmaloO proves implication§).

This shows that the example of the reduction from maximurdinatity bipartite matching
to maximum flow is indeed a special case of the general schéneeuactions.

8.2. Linear Programming Duality

Linear programming duality is a general technique for &grtg algorithms. Linear pro-
gramming is about optimizing linear objective functionstlire presence of linear constraints.
The dual of a linear program can provide a witness of optityali

For n nonnegative real variables= (xy,...,%,), the goal is to maximize the linear function
cTx= ¥ 1<j<nCjX;j Subject tanlinear constraints. Thieth constraint has the forf; < j<, AjjX; <
bi. In matrix notation, a linear program is defined byrarx n real matrixA and real vectors
andb of dimensiom andm, respectively. The goal is to solve:

maxc'x subjectto Ax< bandx> 0.

The dual linear program is a linear progrannimonnegative variableg= (yi,...,ym). There
is one variable for each constraint of the primal linear paoy The objective function to be
minimized isy" b = Y 1<i<mVYibi. There is one constraint for each variable of the primal. jFite
constraintisy 1<j<mVYiAij < . Thus, in matrix notation the dual program can be formulaisd

miny'b subjectto y'A>c' andy > 0.
Lemma 11 (Linear Programming Duality). For linear programs, the following holds:

41

(a) Weak Duality: If X and y* are solutions to a linear program and its dual, respectiyéhen
T % T
c'xX* <y"'b.

(b) Complementary Slackness: Assurhand y are solutions to a linear program and its dual,
respectively, with Bx* = y*Tb. Let A. i) be the i-th column of A and let A be the j-th row

of A. Then ¢= y*TA(.J) whenever x> 0and by = A .)X* whenever y> 0.

K

(c) Strong Duality: If both programs are feasible, then #hare solutions %and y* with c"x* =

v Th.

Proof: We only prove weak duality and complementary slacknessstong duality, we refer
the reader to any textbook on linear programming, eRchBg. Weak duality is easy to prove.
We have

c'x <y TAX <yTb.
The first inequality follows front’ < y*T A andx* > 0 and the second inequality follows from
AX" < bandy* > 0.

Assume now that” x* = y*Tb. Then both inequalities in the equation above must be equali

ties, i.e.,

X =y TAX =y Tb.

In particular for any with x* > 0, we must have; = y*TA(.J) and for anyj with yj > 0, we must
haveb; = Aj X", showing the complementary slackness. O

So a certifying algorithm for solving linear programs outpa primal solutiorx* and a dual
solutiony* with cTx* = y*Th. Observe, that it is trivial to check whethefris a solution for the
primal, thaty* is a feasible solution for the dual, and tltdx* = y*Tb. Also the proof that this
certifies optimality is trivial as we have seen above. It iydhe existence ok* andy* (i.e., the
strong duality) which is hard to prove, but this is not neetdeble convinced.

The previous section, that deals with the reduction of bifgamatching to the computation
of a maximum flow, shows an example of linear programming iduallhe dual problem to
the maximum flow problem is the minimugs,t)-cut problem. As a second example we now
consider the minimum spanning tree problem.

Minimum Spanning TreesletG = (V, E) be an undirected connected graph aneMeE — R~o
be a nonnegative weight function on the edges. The goal isitbdispanning tre& C E of
minimum weightw(T) = S .1 w(e).

What constitutes a proof of optimality? Figuté illustrates such a proof; the drawing and
the usage of the word “moat” is inspired byH93. For a partitionrt of the vertex set let @)
be the number of blocks af and letd(m) be the set of edges whose endpoints belong to distinct
blocks of . Assume we have nonnegative valygs one for each partitiomr of the vertex set

42

Figure 11: The figure shows the minimum Euclidean spannegaf pointsA, B, C, andD. The four points define

a complete graph on four vertices; the weight of an edge iEtlotidean distance between its endpoints. The edges
shown form a minimum spanning tree of this graph.

The figure also shows a proof of optimality of this spannimgtin the form of three moats of radjiq < rgreen<

rbiue- ANy spanning tred’ must have three edges crossing the red moat (= the union tfibe red circles) and
hence accrues a cost ofB regwithin the red moat. Similarly, it must have two edges cnog$he green moat (= the
region within the green circles, but outside of the red esgland hence accrues a cost of at lea8t & green— I'red)
within the green moat. Finally, it must have at least one emigssing the blue moat (= the region within the blue
circles but outside the green circles) and hence accruestatat least 12- (rpjye — green) in the blue moat. The
tree shown accrues exactly these costs.

such that
Zyn(#(m-1)=3 we (9)
T ec
> yn<w(e) forallec E (10)
mecd(m)
V>0 forallm 0 cCc ScV. (11)

Then the valuey;; certify optimality of T.

43

Lemma 12. If (9) to (11) hold, T is a minimum weight spanning tree.

Proof: LetT’ be any spanning tree. For any partitimnthe number of edges () N T’ must
be at least #1) — 1 and hence

w(T") = > w(e) definition ofw(T’)

ecT’

> Z Z Y by inequality (0)
ecT/ meco(m)

= Z Z Vi change of order of summation
T ecT/No()

> yn(#(m) - 1) since|T'Nd(m)| > #(m) — 1 andy; > 0
T

=w(T) by equation 9)

ThusT is a minimum spanning tree. O

We next show how to compute the valugs the construction will associate nonzero values
yronly with n— 1 partitions. Lefl be an alleged minimum spanning tree anctleey, ...,en_1
be the edges oF in increasing order of weight; ties are broken arbitraililgt 77 be the partition
consisting oin singleton blocks and, far> 2, let 75, be obtained frontg by uniting the blocks
containing the endpoints @. Observe that the endpoints must be in distinct blocks Sinisea
tree. We defing;; = O for anyrrthatis notin{ ra,..., 1 }. For simplicity, writey; instead of

yr and definé
e if i =1
= We —Weg , ifi>1.

Lemma 13. (9) to (11) hold for the values yas defined above.

Proof: All values y; are nonnegative. The blocks af are exactly the connected compo-
nents of the grapkV,{es,...,e_1}). Thuse has its endpoints in different blocks for all parti-
tions7m, 70, ..., 15 and has both endpoints in the same blockrpofor j > i and hence

we)= Y (we) -wle) twe)=S%= Y Vn

2<<i I<i T; eco(m)

Consider next a non-tree edgand leti be maximal such that the endpointsexre in distinct
blocks oft. Thene must connect the same blocksmfase does; otherwise the endpointsef
would be in distinct blocks oft, 1. Thuse ande lie on a common cycle ofV,{e,...,q,e})
and hencev(e) > w(e). Thus (0) holds.

6The radii of the moats shown in Figutd are half of thesg;’s.

44

Finally, inspecting the proof of LemmB2 with T’ = T, all inequalities must be equalities
and henceq) holds. O

How does one arrive at this certificate? Linear Programmsnthe key (CCPS9§). The
fractional minimum weight spanning subgraph problem igg&smulated as a linear program.
We have a nonnegative variabigfor each edge. The value & designates the fraction with
which e belongs to the spanning subgraph. The goal is to minirfize: wexe. We have a
constraint for each partitiorr of V, namely thaty ¢ 5% > #(11) — 1, i.€., for each partition, we
must pick at least@t) — 1 edges connecting vertices in different blocks of the parti We may
do so by picking edges fractionally. We obtain the followfogmulation as a linear program.

minimize WeXe
2
subject to Z Xe > #(m) —1 for all partitionsrt of V
ecs(m)
Xe >0 forallec E.

It is not obvious that this linear program always has an irlegptimal solution. The dual linear
program has a variablg; for every partitionrtr and reads:

maximize Z(#(m —1)yg
T
subject to Z Y < We for every edges
T; eco(m)
Yn>0 for all rt.

A spanning tree is an integral solution to the primal and Leni®shows that there is a dual
solution with the same objective value. Thus a minimum spapninee is an optimal solution to
the primal and the dual solution proves its optimality. Leat2 is a proof of weak duality for
this special case.

Verifying Linear Programs: Linear programming duality is a great method for checking-op
mality of solutions to linear programs. Given a feasibleioh x* to the primal program linear
program

maximizec’ x subject toAx < b andx > 0

and a feasible solutioyt to the corresponding dual linear program
minimizey' b subject toy" A > c' andy > 0

the equality
c'x =yb (12)

implies optimality of both solutions. Unfortunately, liaeprogramming solver<JPL, SoR for
general linear programs are numerical procedures and grdjdapproximate solutions. So we

45

YB N

XN

Cs CN

Figure 12: The decomposition into basic and non-basic bke$a For simplicity, we assumed thag is the left
upper corner of the constraint matrix.

cannot hope that the computed approximate solutions gatigfation {2). Fortunately, linear
programming solvers also return a combinatorial desonptif the optimal solution in terms of
a basis.

A basis is a square non-singular sub-ma#gxof the constraint matriA. We call the primal
variables corresponding to columnsAy basic and denote them By; the other primal variables
are called non-basic and denotedxay Similarly, we call the dual variables corresponding to
rows ofAg basic and denote them lpy; the other dual variables are called non-basic and denoted
by yn. Analogously, we splib into bg andby andcinto cg andcy, see Figurd 2. A basis induces
a primal solutionX%, XY (not necessarily feasible) and a dual solut{@h, yi,) (not necessarily
feasible) by way of:

(13)

Agfg=bg or fs=Ag'bg and X
A (14)

=0
JeAs=cf or yg=ciAzl and Ww=0
The objective value of these solutions is equal. Indeed,
X8 . _ . T o~ bs
(el (52) =cbo = b oa —gabo = (5B.5%) 12).
A basis is primal feasible ifg"> 0 and is dual feasible ifg™ 0.

Lemma 14. If a basis is primal and dual feasible, the correspondingmai (X5, %Y) and dual
solution(yg, y{,) are optimal.

Proof: (%%,%{) is a solution to the primal linear progragyg, yy,) is a solution to the dual linear
program, and their objective values are equal. Thus, thdieak are optimal by Theorefri. [

Optimality of a basid®3 can now be checked as follow®FK*03]. Equations {3) and (L4)
are used to compute the primal and dual solutions correspgnd the basis; the computation
is carried out in exact rational arithmetic. If both soluisoare feasible, the basis is optimal. In
this way, the speed of floating point arithmetic is used to firedoptimal basis and the exactness
of rational arithmetic is used to certify the solution. Iletbasis is not optimal but “close to
optimal”, it can be taken as the starting basis for an exaatgror dual Simplex algorithm.
The use of exact rational arithmetic can be replaced by teeotikigh-precision floating point
arithmetic ACDEOQ7.

46

8.3. Characterization Theorems

Within characterization theorems sometimes lies the piatieio certify an output. We have
already seen examples of this: A graph is not planar if ang drt contains a Kuratowski
subgraph (see Sectidn6), and a graph is not 3-connected if and only if it containspasaing
pair (see Sectiob.4).

Interestingly these characterizations follow a certaitiqua: One direction of the proof of
the characterization is easy, and this side correspondsjtored simplicity of the witness. The
more difficult direction is the one required to establishékistence of a witness.

To clarify this statement we provide another example: A br@ps perfectif the chromatic
number of every induced subgraphof G is equal to the size of the largest cliquetbf

An odd holein a graph is an induced odd cycle of length at least 5pda anti-holeis
an induced subgraph isomorphic to the complement of an ot Ade strong perfect graph
theorem CRSTO0§ says that a graph is perfect if and only if it contains neittwe odd hole nor
an odd anti-hole.

The chromatic number of odd holes and of odd anti-holes iseqatl to the size of their
largest clique, so they cannot be contained in a perfecthgripis easy part of the characteriza-
tion shows that odd holes and odd anti-holes certify a grajie thot perfect. The second part of
the strong perfect graph theorem, the existence of an o@ddn@in odd anti-hole in a non-perfect
graph, resolves a conjecture that had been open for moredthgears. The polynomial-time
algorithm for the recognition of perfect graptJL " 05] detects an odd hole or an odd anti-hole
in a perfect graph, and thereby certifies a graph to be notgterf

8.4. Approximation Algorithms and Problem Relaxation

Approximation algorithms compute nearly-optimal solag®f optimization problems. They
come with a guarantee for the quality of approximation. We mssume w.l.0.g. that we deal
with a minimization problem. In the proof of correctness thality of the solution is usually
measured against an easy to compute lower bound for thegmnol#\ certifying approximation
algorithm should output (in a certifying way) a lower boundaddition to the solution. This can
either be the lower bound used in the proof of correctnessathar lower bound. The general
technique for obtaining lower bounds is problem relaxatio®, enlarging the set of feasible
solutions. We give an example.

The traveling salesman problem asks for a shortest cycleéngsall vertices of a edge-
weighted undirected grapB = (V,E,c). The costc(C) of a cycleC is the sum of the costs
of the edges contained i@. We assume that satisfies the triangle inequality, i.e(uv) <
c(uw) + c(wv) for any triple of verticess, vandw. There are approximation algorithms which
produce a solution whose cost is at most 1.5 times the optipulrRKS85]. We discuss two
lower bounds for the traveling salesman problem: 1-treestha subtour elimination linear
program. Both approaches yield the same value, but use féagedt principles CCPS98.

Lower Bounds via 1-TreedA 1-tree anchored at a vertex[\HK70Q] is a spanning tree &\ v
plus two edges incident t@ A 1-treeis a 1-tree anchored at some vertesf G. As for cycles,
the cost of a 1-tree is the sum of the costs of the edges in theel-A minimum 1-tree is a
1-tree of minimum cost. Minimum 1-trees are readily comdutg n minimum spanning tree

47

computations since the minimum 1-tree anchored at a veriexsimply a minimum spanning
tree of G\ v plus the two cheapest edges incident.to

Minimum 1-trees can be used to lower bound the cost of angliray salesman tour. For
this letrbe any real-valued function defined on the vertice§ @ind consider the modified cost
functionc™(uv) = c(uv) + m(u) + m(v). We call T a potential function. The cost of a one-tfEe
under the cost functioo™ is defined ag™(T) = ¥ 1 ¢'(uv). Accordingly, a minimum 1-tree
with respect to the modified costis a 1-tree with minimal modified cost.

Lemma 15. Let C be a traveling salesman tour, latbe a potential function, and let T be a
minimum 1-tree with respect t@ Then

¢(T) -2 2 n(v) < c(C).

Proof: Sincec satisfies the triangle inequality, there is a t@uwisiting every vertex exactly
once and having cost no more th@n This tourD is a 1-tree (with respect to any anchor) and
hence

c(T) <c™(D).

SinceD uses exactly two edges incident to any vertex,
c(D)=c"(D)-2 Z/ (V).
ve
Combining the equalities and inequalities, we obtain

c(C) >¢(D)=c"(D)-2 Z/ n(v) >c(T) -2 Z/ m(v).
U

A certifying approximation algorithm for the traveling eaman problem outputs a toQy a
potential functionrr and a minimum 1-tred@ for ¢, and a proof of optimality off. The proof
of optimality reduces to the minimum spanning tree problén which we have discussed a
certifying algorithm in Subsectiod.2

A good potential functiorr can be found by an iterative processlif70, HK71]). Observe
that

c(T)-2 Z/ m(v) =¢(T) + Z/degr (v)m(v) — 2 Z/ m(v) = ¢(T) + ;(degr (V) —2)m(v),

where deg(v) is the number of edges @fincident tov. We conclude that the vect@eg; (v) —
2)vev is the gradient of the expressiofi(T) — 25 ¢y (V) viewed as function oft.

We start an iterative process witi{v) = O for all v. In an iteration, we first compute the
minimum 1-treeT with respect to the current modified cost functioh If T is a tour, i.e.,
deg; (v) = 2 for all v, we stop;T is an optimal tour. Otherwise, we updatéo 17’ as follows:

' (v) = m(v) + &(degr (v) —2) forallveV,

48

whereeg > 0 is a small value; this is a small step in the direction of ttelgent and increases the
potential value of vertices of degree three or higher andedses the potential value of vertices
of degree oné. We setrr= 17 and repeat. The iterative process produces a sequence &f low
bounds. We remember the best lower bound computed in thismdyise it to produce a lower
bound for our problem, as described above.

Lower Bounds via Linear Programmindi\n integer linear programming formulation of the trav-
eling salesman problem is as follows. We have a decisiombirk. for each edge of the graph
with the intention that the edges with = 1 comprise an optimal solution. A tour contains two
edges incident to every vertex and for every non-empty prepbsetS of V there must be at
least two edges in any tour with exactly one endpoirs.iilVe obtain the following formulation
as an integer linear program.

minimize CeXe
2
subject to Z Xe =2 forallveV
eco(v)
Z Xe > 2 for all Swith 0 £ S#V
ecd(9)
Xe€{0,1} forallec E

Here we use&(S) to the denote the set of edges with exactly one endpoi6t ilihe equality
constraint for vertew is called adegree constrainand the inequality for subs&is called a
subtour elimination constraint Consider any solution of this system and Tetoe the edges
picked;ec T iff xe = 1. ThenT contains two edges incident to every vertex and hence is a
collection of cycles. Assume for the sake of a contradigtibat the collection consists of more
than one cycle and I&be the vertex set of one of the cycles. THepontains no edge iB(S)
and hence violates the subtour elimination constraingfor

The subtour LP is obtained from the ILP by replacing the aastx. € { 0,1} by the weaker
linear constraint & xe < 1. Thus the subtour LP is a relaxation of the traveling sasespnoblem
and provides a lower bound. Figut8gives an example. In this example, the cost of an optimum
tour is 10 and the objective value of the subtour LP is 9. Theergay be as large as a factor of
two [CCPS98.

The subtour LP has an exponential number of constraintdpoeach non-empty proper sub-
set of the vertices. It can be solved in polynomial time by nsaa the ellipsoid method§ch03.

For an edgeiv, we havec™ (uv) = c(uv) + £(deg; (u) + deg (v) — 4). Also,

c(T)-2 Z/n’(v) =c(T)-2 Z/rr(v)—u: Z/ degr (v) — 2)2.

(

Thus the cost of the 1-treE increases by the change of the potential function. Howeater, a different 1-tree
may be minimal and hence it is not guaranteed that the iteratioduces better and better lower bounds. In fact, in
general, it does not do so.

49

O

1/2

Figure 13: The figure on the left shows the edge costs; thersimredges of cost two and three edges of cost one.
The figure on the right shows an optimal solution to the subtdu The decision variables corresponding to the
edges of cost two have value 1/2 and the decision variablessgonding to the edges of cost one have value 1. The
solution has cost 9. The optimal tour has cost 10.

In practice, one uses the simplex method and a judiciousig@t subset of the subtour elimina-
tion constraints. The subset is determined dynamicallyteglanique calledeparation Let (x3)
be a solution to an LP comprising the degree constraintdydi@ding constraints € xe < 1,
and some of the subtour elimination constraints. Consideniliary graph with vertex séf,
edge sek, and set the capacity of the edg¢o xi. Then(x3) violates a subtour elimination
constraint if and only if this auxiliary graph has a cut of aejty less than two. Such a cut can
be found by a minimum cut computatio8\\V97. If a violated subtour elimination is found, it
is added to the LP, and the LP is resolved.

In Section8.2we learned how to verify solutions to linear programs. Nowwet to certify
a lower bound and this can be done by a simple rounding proedd8C"09]. Consider the
dual for the subtour LP. It has an unconstrained variahlér each vertew, a non-negative
variableys for each non-empty proper subsgbf V, and a non-negative variab#g for each
edgee. The variablez, corresponds to the upper bound constraint 1. The goal is to

maximize ZZ m—i-ZZyS %ze
subject to T+ T+ Z Ys—Ze < Ce fore=(u,v) €E
Seco(9)
ys>0 for all Swith 0 £ S#£V
Z>0 foralle

50

If the primal or dual LP is solved by an LP-solver, the bastanged is not necessarily optimal.
Also, primal feasibility and dual feasibility are not guateed. However, the solutions are usu-
ally close to optimal. In the case of the subtour LP, this camxploited as follows. Consider any
(not necessarily feasible) dual solutiom,), (ys), and(z). We first replace any negatiye by
zero and we then choose thidarge enough so that all dual constraints are satisfied.igmty,
we obtain a feasible dual solution and hence a lower bounthéitraveling salesman problem.

8.5. Composition of Programs

Suppose that we have certifying algorithms for 1/0-behes/i@1, 1) and (¢2, Y»). How
can we obtain a certifying algorithm for the composed bedr&/That’s easy.

Let Q; andQ; be certifying algorithms for the two 1/O-behaviors, redpesty, and letC; and
C, be the corresponding checkers. A certifying algorithm Far tomposed I/O-behavior works
as follows: Assume that our inputxs

RunQ onx. This producey and a withessy;.

if (y=_1) then
Output_L and the witneséwy, L, 1)

else
RunQ2 ony. This produceg and a witnessv,.
Outputz and the witness = (wq, Y, Ws).

end if

The checke€ for the composed behavior acceptg,y,w”’) as a witness if

y=1 and C; acceptyx,y,w) or (15)
C; acceptgx,y,w) and C; acceptyy,z,w"). (16)

Two I/O-behaviors should only be composed if the postcamliof the first behavior implies
the precondition of the second behavior, i (X,y) = ¢2(y). If Q2 is strongly certifying, it
can discover a misuse of composition: Assume thaytatput byQ; does not satisfy,. Then
Q2 will either produce & with y»(y,z) and a proof that it did so or a proof ferg,(y). In the
former caseQQ, could handley although it did not have to do so, in the latter csestates that
its precondition is violated.

9. Further Examples

In the introductory Sectiofh we have discussed the examples of bipartition, connected co
ponents, shortest paths, greatest common divisors, maxigasdinality matchings and pla-
narity. In Subsectio®.2 we discussed a strongly certifying algorithm that five-cela planar
graph and in Subsectioh4 we described a simple way to certify triconnectedness. We no
discuss further illustrative examples, demonstratingotfoad applicability of certification.

9.1. Convexity of Higher-dimensional Polyhedra and Corivels

The convex hull of a finite s& of points ind-dimensional space is the smallest convex set
containingS. Its boundary is a piecewise linear hyper-surface. Thezaxany algorithms for

51

higher-dimensional convex hull€K70, PS85 Sei8§ CS89 CMS93 and implementations of
some BDH96, MMN 798, CGA]. In 2 and 3 dimensions the output of a geometric algorithm ca
be visualized and this helps debugging geometric programtggher dimensions, visualization
is not possible. How can one certify the output of a convekdigbrithm?

What is the output? All algorithms output the boundary of ¢bavex hull as a simplicial
piecewise linear hypersurfacg. We will define this term below. In 3-dimensional space the
boundary is given as a set of triangles (in 3-space) thatlaszgldogether at their edges.

Task 1. Given a set S of points and a hyper-surfageverify that.# is the boundary of the
convex hull of S.

We split this task into two subtasks.

Subtask 1. Given a piecewise linear simplicial hyper-surfagein d-dimensional space verify
that.# is the surface of a convex polytope.

Assume that7 is the surface of a convex polytope andRebe the convex polytope whose
boundary is# .

Subtask 2. Verify that
e every vertex of P is a pointin S and that

e every point of S is contained in P.

We discuss the two subtasks in turn. This section is base®1dI8[99, Section 2.3]. An
alternative solution can be found IDLPT98. We first deal with the Subtask whether a simpli-
cial piecewise linear hyper-surfacé without boundary ird-dimensional space is the boundary
of a convex polytope. We assume that the hyper-surface endiy its facet graph. The facet
graph is ad-regular graph whose nodes are labeleddiyples of affinely independent points,
i.e., each node corresponds to an orierftbd 1) simplex (= a facet of the surface). The hyper-
plane supporting a facet dividelsspace into a positive and a negative halfspace. Neighiporin
nodes differ in their labeling by exactly one point and foeswne of thed vertices of a facet
there must be such a neighboring facet. In other words, eclgesspond tdd — 2)-simplices
shared by two facets. Neighboring nodes must be labeledstensy, i.e., the negative halfspace
corresponding to adjacent facets must agree locally.

Let us interpret this definition in 3-space. Every node offde®t graph corresponds to an
oriented triangle in 3-space. Oriented means that the tdes0f the triangle are distinguished,
oneis “outside” and one is “inside” (in the paragraph abow&de and outside are called negative
and positive, respectively). Adjacent triangles sharewertices and differ in one. Every triangle
has three neighbors and the two sides of adjacent triangdde@ally consistent.

For smooth surfaces, already Hadamard described a tegirioexity.

Theorem 9 (Hadamard). Let.Z be a smooth compact surfaced without boundary and let
d > 2. If # is locally convex at everyone of its points th&nis the surface of a convex body.

52

Figure 14: Local convexity at ridges does not suffice: Therigahows a locally convex yet self-intersecting polygon
in thex,y-plane. A smooth version of this curve demonstrates thatomelitiond > 2 is necessary in Theoretn
Extending the polygon to a bipyramid by adding two pointse @ach on the negative and posit:axis, and
constructing two triangles for each polygon edge yieldsnap§cial surface that is locally convex at every ridge
but has self-intersections; in the figure only the upper bfthe bipyramid is shown. The pointshown is on the
negative side of all facets of the surface.

This theorem suggests that it suffices to check local cotwexievery ridge of a simplicial
surface. Although this is clearly a necessary conditionglobal convexity it is not sufficient
as Figurel4 shows, i.e., the non-smoothness of simplicial surfacesptioates matters. The
following theorem is the proper formulation for the polyhaiccase:

Theorem 10 (MNS*99]). Let.Z be a simpliciald —1)-dimensional surface without boundary
in RY that is consistently oriented, let o be center of gravity lbffee vertices of surface? and
let p be the center of gravity of some facet’df Then.7 is the surface of a convex body iff

e 7 islocally convex at all its ridges,
e 0 is on the negative side of all its facets, and
¢ the ray emanating from o and passing through p intersectg thrd facet containing p.

We refer the reader tdNS+99] for a proof of this result. Figuré4 illustrates it: Leto be
any point in thex, y-plane that is on the negative side of every facet of the sarsaown. All but
two rays emanating froro intersect the surface twice and hence witness the non-gyna
the surface. The two exceptional rays go through the twadtiplse bipyramid, i.e., pass through
a lower dimensional feature of the surface. The key insigloteulying the criterion is that this
observation is generally true.

The conditions listed in Theorefr® are clearly necessary. Also, if every ray emanating from
o intersects# only once,.# is the surface of a convex body. It is somewhat surprisingt th

53

it suffices to compute the number of intersections for a simgly. The verification is easy to
program.

e Check local convexity at every ridge. If local convexity dowt hold at some ridge declare
Z non-convex.

e Seto to the center of gravity of the vertices &f and check whethay is on the negative
side of all facets. If not, declat& non-convex.

e Choose any facet and Ipte the center of gravity of its vertices. Lrdbe the ray emanating
from o and passing througp. If r intersects the closure of any other facet%fdeclare
Z Non-convex.

e If .7 passes all three tests declare it the surface of a conveiopely

We next turn to the Subtask Assume that# passed the convexity test and Rbe the
convex polyhedron with boundary¥f . We need to verify that

e every vertex oP is a point inSand that
e every point ofSis contained irP.

The first item is fairly easy to check. If the vertices Bfare equipped with pointers to
elements irf, the check is trivial. If the vertices & are specified by their coordinate tuples, the
check involves a dictionary lookup.

The second condition is much harder to check. In fact, witladditional information (= the
witness), there seems to be no efficient way to verify it. Agarmethod would be to check
every point ofSagainst every facet o . However, the complexity of this method is an order of
magnitude larger that the complexity of the most efficiemvex hull program% An alternative
method is to use linear programming to check that all notiaes are non-extrerie For fixed
dimension the alternative method is quadratic in the nurobeertices. For variable dimension
one might hope that a simplex-based verification procedasegood expected running time.
Nevertheless, both approaches essentially resolve thi@akproblem. We conclude that convex
hull programs that output the hull as a convex polytope ard taacheck. The “gift-wrapping”
algorithm [CK7Q] falls in this category.

What is an appropriate witness that makes checking easy®islene. Arrange the points in
Sin a linear order and for each poiptin Sthat is not a vertex oP indicate a set ofl + 1 points
that come later in the ordering and that contgim their convex hull. We call such an ordering
anadmissible orderingf S.

8Algorithms based on randomized incremental construc@®89 CMS93 BMh94] run in time related to the
size of the output and the size of intermediate hulls and lth@righm of [Sei8f is guaranteed to construct the hull
in logarithmic time per face.

9The linear program hasvariables corresponding to the coefficients of a linear fionc For each vertex of?
there is a constraint stating that the function value at #réex is negative. For each non-vertex consider the linear
program that maximizes the function value at this point.

54

Lemma 16. An admissible ordering of S proves that every point of S isasoned in P.

Proof: Letq; to g, be an admissible ordering 8 We show that eacty is a convex combina-
tion of vertices ofP. We use induction onstarting ain and going down to 1. Consider anyif

gi is a vertex ofP, there is nothing to show. Otherwisg,is a convex combination of points that
come later in the ordering. By induction hypothesis, thesatp are convex combinations of the
vertices ofP. Thusg; is a convex combination of the verticeskf O

The witness is easily checked. For each point that is claitmé@d a convex combination of
points later in the ordering, one needs to solve a lineaesyst

The algorithms based on randomized incremental consbru¢S89 CMS93 BDH96,
MMN 798, CGA] can be modified to compute this witness. They compute a siilaptom-
plext comprising the hull, i.e., a set of simplices whose unioR.ig’hey do so incrementally.
They start withd + 1 points of S spanning a simplex and then add point after point. If a new
point p is contained in the current hull, they determine a simplethencurrent simplicial com-
plex containingp. The vertices of this simplex are the witnessesgorlf the new pointp is
outside the current hull, they determine all facets of theent hull visible from the new point.
For each such facét they add a simple®(F, p) with baseF and tipp to the simplicial complex.

Assume now that the algorithm is rerun: first the verticeB afe inserted (in random order)
and then the non-vertices (in any order). In this way, all@iogs in the simplicial complex have
their vertices among the verticesfrand each non-vertex i8is placed in a simplex spanned by
vertices ofP.

9.2. Solving Linear Systems of Equations

We consider a systerax = b of m linear equations im unknownsx; hereA is am by n
matrix of real numbers anld is anm-vector. We want to know whether there is a solution to
this system. Again, a conventional algorithm would justireta single bit, telling whether the
system is solvable or not.

A certifying algorithm would do a lot more. If it declares thgstem solvable, it would return
a solution, i.e., am-vectorxy such thatAxy = b. Observe that it is very easy to verify whether a
givenxg is a solution. We simply plugg into the equation.

If it declares the system non-solvable, it could returmawmectorc such thac’ A= 0 and
c'b = 0. Observe that such a vector witnesses non-solvabilitledd, assume the existence of a
solutionxg. ThencT Axy = (cTA)xg = 0" %9 = 0 andc™ Axy = ¢ (Axg) = c" b # 0, a contradiction.
Thus there is no solution.

Why does such aexist? IfAx= b has no solutionh does not belong to the space spanned by
the columns ofA. Thus we can writd asb = b’ +b”, wherel' is in the span of the columns &f
andb” is orthogonal to all columns @§. We can take=b". ThencTA=0andc"b=b"Th" #£0.

How can we compute suchc We use Gaussian elimination. It is well known that it resurn
a solution when given a solvable system. It is less well knoinat it also returns a witness

10A simplicial complex is a set of simplices the intersectidmoy two is a face of both.

55

for non-solvability when given an unsolvable system. Wecdbs Gaussian elimination as a
recursive procedure. If all entries éfandb are zero, the zero-vectof' @& a solution. If all
entries ofA are zero and is nonzero, say; # 0, them-vectore having a one in positionand
zero everywhere else witnesses non-solvability.

So assume tha has a nonzero entry, sdy; # 0. We subtract a suitable multiple of théh
equation from all other equations (i.e., we subtragfAj; times thei-th equation from thé-th
equation for 1< | < mandl # i) so as to eliminate thg-th variable from the other equations.
The transformation yields a system with— 1 equations im— 1 unknowns, sap'x' = b/. Here
Al =Ak— (Aj/Aij)Ai andbl = oy — (A /Aij)bi for | #i and allk. Also, row index and column
index j are deleted from the index set of the reduced system. Asstshthfat the reduced system
is solvable andg is a solution. We plugy, into thei-th original equation, solve fotj and obtain
a solution to the original system. Assume next that the redwsystem is unsolvable and that
¢ witnesses it, i.e.¢TA= 0 andcTb’' £ 0. We define then-vectorc by ¢; = ¢ for | i and
G = —z|7éi(A|j/Aij)c{. Then for anyk, 1 <k <n,

ZC|A||(= CiAik‘F,Z'CIAlk
#I
= CiAik+;Cll(Allk+(A|J/Aij)Aik)
= (G +;C|/(Alj/Aij>)Aik+;CllAllk

:|;CI/AIIK
=0.

An analogous computation shows tiehb = ¢'Tb’ and hence’b # 0. We have now shown that
Gaussian elimination easily turns into a certifying solfggrinear systems of equations.

9.3. NP-Complete Problems

Branch-and-Bound and Brunch-and-Cut are powerful metliodsomputing optimal so-
lutions to NP-complete problem&BCCO06. The algorithms use a heuristic for computing a
feasible solution and compute a matching lower bound (wéaggsume a minimization prob-
lem) for the objective value of any feasible solution to maptimality. For the latter, they
partition the search space and compute a lower bound foraediobf the partition. The heuristic
solution is optimal if its objective value matches the loweund.

In the case of the Traveling Salesman Problem (see Subs&cfjdhe partition is usually by
inclusion and exclusion of edges. For example, we mightidivhe search space into two parts,
by considering all tours containing a particular edyeand all tours not containing this edge.
Figurel5shows an example. The two cells obtained in this way can beéiadid further using
the same strategy recursively. In each cell a lower boundngpaited, e.g., using the methods of
subsectior8.4. In summary, the approach is as follows.

e Use a heuristic to find the optimum solution. Verify that tioéusion is feasible.

56

Figure 15: In the example of Figufe3, the optimal solution to the subtour LP is fractiongl; has value 12. We
generate two subproblems. In the first subproblem, wegseto 1 and force the edge into the tour. In the second
subproblem, we sef 1 to O; this is tantamount to deleting the edge. For both suidpros, the subtour LP (in fact,
the LP with only the degree constraints) has objective vallie For the first subproblem there is a non-integral
solution of value 10 as shown on the right, there is also agnal solution of value 10.

e Partition the space of feasible solutions. Verify that thetigion is indeed a partition.

e Compute for each cell of the partition a lower bound on thectije value of the feasible
solutions in this cell. Verify that the lower bound computedeach cell is indeed a lower
bound and has at least a value equal to the cost of the helgwdtition computed in the
first step.

The first two steps are typically simple. For the last steg vses the techniques discussed in
Section8.4. In [ABC'09], Applegate et. al. report about the the certification of ptinal TSP
tour through 85,900 cities. The tour was obtained by a hicfidel0q and then verified by the
approach outlined above.

As a second example consider the satisfiability problem opgsitional logic. Letp be a
boolean formula. A satisfying assignment is a witness aggability. A resolution proof is a
witness of non-satisfiability. The resolution proof may éa&xponential length; it is however,
easy to check.

9.4. Maximum Weight Independent Sets in Interval Graphs

Given a collection of weighted intervals, the goal is to fimdidependent set of maximum
weight. We use to denote a generic interval ahtb denote an independent set. The goal is then
to find an independent sebf intervals of maximal weigh¥ ;c, wi, wherew; > 0 is the weight
of intervali. This problem is one of the introductory examples in thelteak of Kleinberg and
Tardos KTO05].

The standard algorithm for this problem uses dynamic prograng. Assume that the inter-
vals are numbered in the order of their left endpoint. Thenegltsolution either contains interval
1 or it does not. Thus

Opt(1,n) = max(Opt(2,n),wy + Opt(j,n))

57

I I I 41 I I I I I I

I i I I I I I I I I

I 2| I I I I I I I 11

I I I I 1 3 1 I I I I

I I I I I I L1 I I

X X0 a0 X a0 aXaX o
2 0 3 1 1

Figure 16: An instance of the maximum weight independenpestlem: The interval are indicated as horizontal
lines. The weight of each interval is indicated near therirse The two intervals drawn as heavy lines form a
maximum weight independent set. There are five maximal egudicated by X, theiyc-values are indicated
below the X’s.

wherej is minimal such that the¢-th interval is independent of the first, i.e., its left enoipas
to the right of the right endpoint of interval 1. The algonthhas linear running time by use of
memoization.

We will next derive a linear time certifying algorithm. A glie is a set of intervals that
intersect pairwise. A maximal clique is one that is not cordd in any other clique. Consider
the sorted list of all interval endpoints. Cliques corregpto the elementary intervals. A clique
is maximal if the left endpoint of the corresponding elenagpninterval is the left endpoint of an
interval and the right endpoint of the corresponding eleargrinterval is the right endpoint of
an interval.

We compute an independent $étand nonnegative valugg andwic for each maximal
cliqueC and interval € C such that (see Figurkp)

W = Z wc and wic <yc and maxwic =)c.
cee iel*NC

Consider now any independent $etf intervals. Then

ZW, - Z S wic = Z Wic = Z maxwic < Zyc,
CieC ielnC i€lnC

where the third equality follows from the fact that each eégcan contain at most one element
of I. Forl =1*, the inequality is an equality. Thug(l) < w(lI*) andl* is a maximum weight
independent set.

For an interval, letL; be the leftmost maximal clique containingA simple greedy algo-
rithm determines thg: andwic values. We process the maximal cliques in order (say froht rig
to left) and assign to each clique a valge We also maintain reduced weightsfor all intervals
i. Initially, w/ = w; for all i. LetC be the current maximal clique (initially the rightmost maal
cligue). We set

yc=max{W |Li=C} ,

58

i.e., we setyc to the maximal reduced weight of any interval havld@s its leftmost maximal
cliqgue. Maximality ofC guarantees that there is at least one such interval. Alsoarfgi
contained irC, we setwic to the minimum ofyc andw/ and reducev, by wic.

An intervali is calleddefiningfor C if C = L; andyc = wic andyc > 0. A clique C with
yc = 0 has no defining interval. An interval is called tight ©©rif wic = yc. The following
Lemma is key (and also obvious).

Lemma 17. If i is defining for L; then i is tight for all cliques containing it.

Proof: If i is defining forL;, wi., =y, > 0. This implieswic = yc for all maximal cliques
containingi.]

We next construct the independent KetlLet C be the leftmost clique. If its valug: is zero,
we move on to the next clique. Otherwise, il defining forC. We addi to I* and remove all
cliques containing and all intervals intersecting with it from the problem. @b that, by the
preceding Lemmawip = yp for all cliquesD removed and that the intervals removed have their
leftmost maximal clique among the removed cliques. In ottends, the remaining cliques keep
their defining intervals. We continue with the leftmost reémvag clique. In this way, we have
for everyC with positiveyc an intervali in I* with wic = yc.

9.5. String Matching

Given a text stringlgTy ... Th_1 and a patteri®y...Pyn_1, the string matching problem is to
decide whether the pattern occurs in the text string, i.aether there is a positiansuch that
Tiyj = Pj for 0 < j <m. In such a situation, we say that the pattern occurs with shif

For the purpose of certification, if the pattern is found tbsifion is output. A certificate for
the contrary case may be given in the form of an awetpat indicates for each shift a specific
character mismatch. The arraythat satisfiesv[i] = min{j | Ti;.; # P;} provides exactly that:
placing the pattern into the text with a shiftiafreates a mismatch at positios w(i|. To verify
the validity of the certificate it suffices to cheeKi] € {0,...m—1} and T, # Ry for all
i€{0,...,n—m}.

We now show how the Knuth-Morris-Pratt algorithm can be rfiedito provide such a cer-
tificate with its answer. Surprisingly, we could not find thedification in the literature. As is
customary, we extend the pattern by a character $ that ddewsatoh any other character, i.e.
Pn=$andT; # $# P; for 0 <i < nand 0< j < m. Assume for the time being that we have at
our disposal a functiow/, where

w(i)=min{j|Rj#P}
for 1 <i < m. It will be computed along with the prefix functiom where
m(q) =max{—-1}u{h|h<qgandR...Ry=Py_n...Py}).

The functionsv andrrare related. For atjand all¢ with 1 < ¢ < q— r1(q) we havel +w (¢) < q.
Indeed,Ry. .. Pyq matcheshy nq) --- Py and m(q) is maximal with this property. Thus if we

59

To T ... Tt ... Tugmg-1 Ttrgn@ -~ Tt+g Tt4o+t
- - L= 4

Pq
Po . Pn(q)
Figure 17: A typical situation during string matching.

placeP at position/ of P with 1 < ¢ < q— 1(q), we must have a mismatch before positipn
Thus/+w (¢) <q.

Assume now the longest prefix of the pattern that matchesubstisng of the text starting
from positiont is of lengthq, see Figurel7. We claim that in this situation we can easily
compute the values(t 4 ¢) for ¢ € {0,1,...,q— m1(q) — 1}. First we observe that(t) =q+1
by definition. For/ € {1,...,q— m(q) — 1} we claimw(t +¢) = w/(¢). Indeed aligning® at
positiont + ¢ of the text is the same as aligning it at posittoof the pattern, at least for the next
g+ 1 characters. The mismatch wikhoccurs at positiorf +w (¢) and since this number is at
mostg, the mismatch witll occurs at + ¢+ w (¢). Thusw(t + ¢) = w (¢).

Similar to the computation of thefunction, the computation af can be done by employing
the same algorithm to match the pattern against itself. Reaucalls tow values will only
invoke positions that are smaller and have already been gtatp

In the analysis of the running time we would see that for eypasitioni there is exactly one
assignment fow(i) whose right hand side involves only a number or a previoustykaw value.
The corresponding statement fot holds equally, therefore the total running time increases b
at mostO(m+n).

9.6. Chordal Graphs

A chordon a simple cycle is an edger that is not an edge of the cycle but whose endpoints
are vertices on the cycle. A graphdbordalif every simple cycle of length at least four has a
chord. The ability to efficiently recognize chordal grapteypd a key role in linear time algo-
rithms for recognizing interval graphs, which are chordald is discussed at length i6¢I8Q
and the introductory textbool[T05].

To certify that a graph is not chordal, it suffices to point authordless cycle. The checker
must check that this cycle is, indeed, a cycle of the grapt,iamust check that this cycle is
chordless. This can be done by marking the vertices and treiimg through the edges to make
sure that no edge that is not part of the cycle has two markepicents.

The certificate that a graph is chordal is similar to the topological sort as a certificiuiat
a graph is a directed acyclic graph. (ify,vo,...,vn) is an ordering of the vertices @, then
the rightward neighborof v; are those neighbors of that lie to its right in the ordering. The
ordering is gerfect elimination ordering the rightward neighbors of every induce a complete
subgraph.

A graph is chordal if and only if it has a perfect eliminatiordering. Thus, an elimination
order can serve as a witness that a graph is is chordal.

60

Algorithm 1 KMP-MATCHER

1: n« lengtHT]; m« lengthP]
2. m«+— COMPUTE-PREFIX-FUNCTION(P)

3: g« -1
4: fori=—-1ton—2do
5: /I We haveT [i —q] .
6: while g>0andP[q+1] # Tli+1] do
7: w(i—q)«—q+1
8: for {=1toq—rm(q) —1do
9: W(I—q—l—Z)HV\/(Z)
10: end for
11: g« r[[q]
12: end while
13: if P[g+1] = T[i +1] then
14: q—q+1
15: else
16: W(I) —0
17: endif
18: ifgq=m-—1then
19: print “Pattern occurs with shift—m”
20: end if
21: end for

.. T[i] =PJQ]...P[q] andi — g plays the role of in Figure17

Il eitherq= —1 orP[q+1] =T[i + 1]

IT[i+1—q]...T[i+1]=P[0]...P[q]

Algorithm 2 COMPUTE-PREFIX-FUNCTION

1: m« lengthP]
2: 0] «+— —1;q« —1

3: fori=0tom—1do

4: while g>0andP[q+1] # P[i+1] do
5 W(i—q)«—q+1
6: for {=1toq—rm(q)—1do
7: W (i —q+£) —w(l)
8: end for
9: q <]
10: end while
11: if P[g+1] = P[i+ 1] then
12: q—qg+1
13: else
14: W (i) 0
15: end if
16: m(i+1)=q
17: end for

/I We havert(i] = g and hencé[i —q]...P[i] = P[0]...P[q]

I eitherq= —1 orP[q+ 1] = P[i + 1]

/IP[i+1—q]...P[i+1] =P[0]...P[q]

61

To understand why, leG be a graph that is not chordal, and supp0s&evo,...,v) is a
perfect elimination ordering. Sindd is not chordal, it has a chordless cy@eof size at least
four. Letv; be the leftmost vertex d in the ordering. Then its neighbovs andvy onC lie to
its right, and sinc€ has no chordy; andvy are non-adjacent, contradicting the assumption that
(V1,Vo,...,Vp) is a perfect elimination ordering.

It is harder to prove that every chordal graph has a perfectir@tion ordering, but this
implication is not needed to be convicted that the input yriggchordal.

A linear-time algorithm to find a perfect elimination ordsgiis given in RTL76]. The
obvious checker for the perfect elimination order takegé&rto run than it takes to produce the
witness. It must check that for each vertgxthe rightward neighbors of; form a complete
subgraph, which takes time that is quadratic in the numbé¢hedge neighbors. Over alf, a
single edge can be checked many times.

In [RTL76] an algorithm is given that checks the witnes€Om+ m) time. The trick is to
postpone the checks in such a way that each edge is checkedrmd.

The algorithm traverses the perfect elimination ordefwgvs, ..., vy). Inductively,v; has
received a lisA(v;) of vertices from its predecessdrg, vo, . .., Vi_1). The algorithm ensures that
v; is adjacent to these vertices, or else declares the witsdaasalid. If it passes this test, it then
determines the leftmost rightward neighhgrof v; and appends the other rightward neighbors
of v, to A(Vj).

For the correctness, {f/1,Vv2,...,vn) is not a perfect elimination ordering, then soméas
rightward neighbors; and vy that are non-adjacent. Suppose without loss of generdidy t
j < k. Itis easily seen by induction fromto j that if the algorithm has not rejected the ordering
by the time thatA(v;) is checked, themy is in A(vj). The algorithm will therefore reject the
witness when it discovers tha{v;) contains a non-neighbor of.

The algorithm can be implemented to rundfn+ m) time using elementary methods, such
as marking the neighbors &f before checkind\(v;), and then unmarking them before moving
on tovj1.

The algorithm originally proposed for determining whethegraph is chordal included an
algorithm that produces a perfect elimination ordering graph is chordal, and an imperfect
elimination ordering if it is notIRTL76]. The paper therefore included the above algorithm for
checking whether an ordering is a perfect elimination anderlt did not describe how to find
a chordless cycle if the input graph is not chordal. The payss then followed by a short
addendum explaining how to do thisY85].

9.7. Numerical Algorithms

Numerical algorithms are usually implemented in floatingparithmetic. As floating point
arithmetic incurs round-off error, numerical computai@o not always yield good approxima-
tions of the true result. Almost every textbook in numereadlysis contains warning examples.
The field of validated numerical computatiort$r94 RumO07 addresses this issue and devel-
ops methods that deliver rigorous results. It is beyond tope of this paper to elaborate on
validated numerical computations and so we confine ours@iWi a simple example.

Let a be a positive real number. We have some method for compugjunars roots, say the

62

method returngy. How good isxg? The following estimate is useful:

a—x3 .
[Va—xo| = <
\/5+X0 afx% if 1

As a concrete example, let us estimate the distangé2d and 158. We have

2.5—-2.4964 0.0036

vV25-158 < =
| < 1+1.58 2.58

<0.0015

9.8. Guide to Literature

Frequently, algorithms research that is performed witttiefficy in mind leads implicitly
to methods suitable to certify the output. For various atbaric problems however, specific
algorithms that allow for certification had to be and havenb@esigned. We briefly survey some
examples.

Graph recognition problems:For various graph classes certified recognition algoritlexs
ist. Among these classes are the interval and permutatephgrKMMSO06], the circular and
unit circular arc graphsNO06], the proper Helly circular arc graph&$S07, the HHD-free
graphs NPO7, and the co-graphd.dR07] (for which there is also a dynamic versioGip0g).
Proper interval graphs are treated Mdi05] and [HHO5], the latter also considers bipartite per-
mutation graphs. Further certified recognition algoritHorseveral hereditary graph classes are
given in [HKO7]. For triconnectedness of graphs, linear decision aligorst are knownHIT73,
MR92]. The fastest certifying algorithm runs in quadratic tirse€ Subsectidh.4and [Sch1().

A linear-time certifying algorithm for graphs for which a kétonian cycle is known is avail-
able EMS1Q; this assumes that the Hamiltonian cycle is part of theinpu

Permutation groups:In [CMPSO03 certifying algorithms for computational problems inviolg
permutation groups given by generators are considerede Blecifically, the problems consid-
ered are deciding membership, subgroups, computing pthé@sSchreier tree, stabilizers, bases,
and computing the order of the given permutation group.

Geometric Problems:In [Ber0g a certifying algorithm for minimally rigid planar graphs i
given. The paperdJLPT98 and [MNS*"99 describe methods for certifying convexity of poly-
hedra and convex hulls (see Subsect¥oi) and various types of planar subdivisions, such as
triangulations, Delaunay triangulations, and convex susidns. Another application of local
to global principles for certification of convexity can beaifa in [Ryb09.

Miscellaneous:.[FKOQ] shows how to certify a large hidden clique in a semi-randeoaph and
[McCO04] explains how to certify whether a matrix has the conseeutines property. Certifica-
tion of various basic graph algorithms (with and withoutnveisses) are discussed Mgt97].

Implementations: Implementations of many certifying algorithms and the esponding check-
ers are discussed iMN99]. For the algorithm library LEDA the concept of certificatithas
been and is one of the guiding principles.

63

10. Randomization

In the preceding sections, we considered deterministitfyieg algorithms and determin-
istic checkers. In this section we consider randomizatidfe first explain that deterministic
checkers turn Monte Carlo algorithms into Las Vegas algorg. We then give three examples
of randomized certification. The first two examples have akbethat does not require a wit-
ness. In the third example the provided witness allows fastef running time of the randomized
checker. Finally, we extend Sectiério randomized algorithms.

10.1. Monte Carlo Algorithms resist Deterministic Certfion

Consider a Monte Carlo algorithm for a functidni.e., a randomized algorithm which on in-
putx outputsf (x) with probability at least 34 and may output anything otherwise. The running
time is bounded byl (|x|).

Assume now that there were an efficient certifying algoritQmuith the same complexity: on
inputx algorithmQ outputs a triplgx,y,w) passing the witness predica#é with probability at
least 34 and may output anything else otherwise. It has running @f¥e(|x|)). Further assume
there is a deterministic check€rthat checks the tripléx,y,w) in time O(T(|x|)). We can turn
Qinto a Las Vegas algorithm fdr as follows: We first rurQ. If the triple (x,y,w) returned byQ
passes”’, we returny. Otherwise, we reruf.

The resulting randomized algorithm always returns theemrresultf (x) and has an ex-
pected running time ifO(T (|x|)). Observe that each round has an expected running time in
O(T(|x|)) since both the algorithr®® and the checkeC run within this time. Also observe that
the expected number of rounds is constant, since the supr#sability is at least 34.

Does this observation imply that Monte Carlo algorithmsiaherently unsafe? No, it only
says that the concept of deterministic certification dogsapply to them. Program verification
does apply and Monte Carlo algorithms are frequently quitgole so that verification may
be(come) feasible. Another option is to deviate from theseinistic checkers by allowing
randomization and error. We describe three examples ingkithree subsections. The first two
examples demonstrate use of randomized certification wittiee help of a witness, whereas
the third example makes use of a witness to provide randahuesdification of the output of a
randomized algorithm.

10.2. Integer Arithmetic

To check the result of a multiplication computation, thddaing method used to be taught
in German high-schools and is already described by Al-Kimairin his book on algebra. It is
known as “Neunerprobe” in German, “casting out nines” in lising and “preuve par neuf” in
French.

We want to check whether= a-b. We form the repeated digit surag s, ands; of a, band
c. The digit sum is formed by adding the digits of a number. & tlsult is a multi-digit number,
the process is repeated, until one arrives at a one digit eurifbr example,

4572— 18— 9.

64

Then one multiplies; ands, with a two-digit result; lets be the digit sum of the the result. If
S# S, thencis not equal ta- b. If s= s, thenc may or may not be equal & b.

The digit sum of a positive integeris nothing but the remainder afmodulo 9 (with repre-
sentatives 1 to 9 instead of 0 to 8). This follows fronf h@od 9= 1 for allk > 1. Thus casting
out nines rests on the statement

if c=a-bthenc mod 9= ((amod 9 - (b mod 9) mod 9.
Of course, a similar statement holds for any integarstead of 9, i.e.,
if c=a-bthenc modg= ((amodq)- (b modq)) modq.

Lets, = a modqand defines, ands; analogously. Les= (s3-S) modg. If s# s, thenc#a-b.
If s= s, qdividesc—a-b. The number of distinct prime divisors of-a- b is bounded. Thus,
if we chooseq from a sufficiently large se® of primes, the test will show # a- b with high
probability. The following theorem quantifies these stagats.

Theorem 11. Let a, b, and ¢ be positive integers boundedZ%kywith k>5.Ifc#a-bthen

1. for any integer d> O the probability that a prime number x taken uniformly at rand
from the primes withif{2,...,2¢24+3 _ 11 divides c-a- b is at mostL/29,

2. the probability that an integer x taken uniformly at ramalérom{1, ..., 2> — 1} does not
divide c—a-bis atleastl/(2- (k+5)In2), and

3. the probability that at least one of £ 2k+ 10 integers x,Xo,...,x_ taken uniformly at
random from{1, ..., 25— 1} does not divide ¢ a- b is at leastl /2.

Proof: 1.) The absolute value af— abis bounded by Z*'+1 To show the statement, we will
show that there are sufficiently many prime numbers in theriail {2,...,2¢3+2d _ 1} and
then, by bounding the number of prime factors of any numbelarger than ?”l*l, we will
show that most of these prime numbers are not prime factdrs-ofb|.

There are at least23+24 /((k+ 3+ 2d)In2) prime numbers which are contained in the
interval{2,...,2¢t3+2d _11_(This s in accordance with the prime number theorem thatthre
approximatelyk/ In(x) prime numbers smaller tharend follows from Dusart’'s boundjus94§,
since ¥+3+2d > 599). On the other hand for any integethat had distinct prime factors, it must
be the case thdt < n. It suffices for us to show that the number of prime$2n. . ., 2k+3+2d _ 11
is by a factor of 2 larger than the number of distinct prime factorgof ab|. Thus it suffices to
show that

2k+3+2d
<2d~(k+3+2d)ln2

Since 2In2< 2, fork > 1 it is true that

)! >|c—ab.

3420 5 okl 4 7). 920 (2]n2),

65

thus
2k+3+2d

£ Skl g
22d.2|n2 = +

By a simple expansion of the fraction it follows that

20 (kt3+2d)in2 292

>k g (17)

Sincek > 1 andd > 1, we have(k+ 3+ 2d)/(292) < log(2k+3+2d /(29 (k+ 3+ 2d)eln2)):
Indeed, the inequality holds fér= 1 andd = 1. Furthermore, fok,d € R 1, the partial deriva-
tives with respect t& andd of the left side of the equation are smaller than the resgepartial
derivatives of the right side of the equation. We can thukapthe second factor on the left side
of Equationl7 and it follows that

2k+3+2d 2k+3+2d
J <2d (

N >kl
2 (kr3r2d)n2 ~k+3+2d)e|n2)_ *

Stirling’s inequalityx! > (x/e)* implies logx!) > xlog(x/e), applying this we proceed to obtain
the desired inequality

2k+3+2d ki1
1 >22" 1> c—ab.
(Zd-(k+3+2d)ln2) = |c—ab]

2.) The second statement follows directly from the first bgiagoting that fork > 11
andd = 1 the number of primes ifi2,...,2"% — 1} is at least #5/((k+5)In2).

3.) For anyi, 1 <i <L, the probability thak; dividesc—abis at most 1-1/(2(k+5)In2)
by the second statement. Therefore, the probability that’'sldivide c — abis at most

1 L L~|n<1*#> L 0 1
1-— =e 2Aki5N2) < @ 2ki5n2 < @ N2 _ =
< 2(k+ 5)In2) = > 5

O

The asymptotic complexity of division is the same as the dnawtiplication. Intuitively,
multiplication is simpler than division. We can check a digha/b = ¢ by checking whether
a=c-bh.

10.3. Matrix Operations

Given threen x n matricesA, B, andC overZ,, we want to verify thaAB=C. There is an ob-
vious way to check the equality: compute the produc ahdB and compare the result entry by
entry withC. This takes timé(n®), wherew is the exponent of matrix multiplicatiolfCiV82].

Already in 1977, R. Freiwalds$fre77 described a randomized algorithm for verifying matrix
multiplication. The algorithm is simple. We generate a @ndvectorx € ZJ and compute
y =A(Bx) —Cx If yis the zero vector, we accept the input, i.e., believe@atAB, otherwise

66

we state tha€ # AB. The computation oy takes three matrix-vector producBx A(Bx), and
Cx) and one vector addition and hence takes ti(g?).

LetX = AB—C. Theny = Xx If AB=C and hence&X = 0, we havey = 0 for any choice of
x. If y#£ 0, thenX #£ 0 and henc@&B # C. It remains to estimate the probability that 0 and
Xx=0.

Lemma 18 ([Fre77]). Let z be a nonzero n-vector ovgs. Then

prob(z'x # 0) = 1/2,

where x is a random n-vector ovép.

Proof: Sincezis nonzero, there is ahwith z, = 1. Then
Z'x=x+ ; ZjXj
JF£L

and hence for any choice of tkg's, j # ¢, there is a exactly one choice fersuch thaiz" x # 0.
O

Theorem 12 (Fre77]). Let X be a nonzero R n matrix overZ,. Then
prob(Xx= 0) > 1/2

where X is a random n-vector ovép.

Proof: SinceX is nonzero, it has at least one nonzero row. We apply the queviemma to
this row. OJ

For further information on certification of matrix productse KS93. We now turn to an
example that requires a witness to allow for the randomizetification.

10.4. Cycle Bases

We discuss the certification of minimum weight cycle basaswlirected graphs. The fastest
known algorithm for computing a minimum weight basis is a Mo@arlo algorithm with run-
ning timeO(m®), wherew is the exponent of matrix multiplicatio®JJ*09]. The algorithm can
be made certifying and the witness can be checked in Montie G@are O(m?). We describe the
required modifications and show how to check the witness.afdg the reader td{LM ~09] for
background information on cycle bases.

Let G = (V,E) be a connected graph withvertices andn edges and letv: E — R~ be a
positive weight function on the edges @f All results of this section also hold for nonnegative
weight functions, but some of the arguments are shorterdsitige weight functions. Ayclein
G is an even subgraph @ and acircuit is an even connected subgraph with all vertices having

67

w

5% 1M K N

C1 Co 3 4

Figure 18: The leftmost figure shows a graph with eight edgés next four figures show four circuits in this
graph. The circuiC; has the vector representation = (0,1,1,1,1,1,0,0). LetD = (1,1,1,1,0,0,0,0) be the
circuit formed by the edges 1 to 4. ThBn=C; +C,+C3+C4. The sef{ C1,C,,C3,C4 } is a cycle basis. Its weight
is equal to three times the sum of the weights of edges 1 tositimes the weight of edges 5 to 8.

degree two, see FiguE8. The weightw(C) of a cycle is the sum of the weights of its edges.
We represent cycles as vectorsﬁﬁ; the coefficient corresponding to an edge is 1 if and only
if the edge belongs to the cycle. The space of all cycles is theector space of dimension
v =m-— (n—1); observe that the addition of two cycles corresponds toyhergetric difference
of their edge sets and hence vyields a cycle. ABet {Cy,...,C, } of cycles is a cycle basis if
any cycleC can be written as a linear combinatiGn= §; AiC; with A; € Z, for all i. Let T be a
spanning tree ofs. For any non-tree edgelet Ce be the circuit formed by plus the path inr
connecting the endpoints ef There aren— n+ 1 such cycles. They are independent and form a
basis; this is called the fundamental cycle basis. The we&ifa basis is the sum of the weights
of the cycles comprising the basis. A minimum weight bassslissis of minimum weight.

The following lemma defines a certificate for minimum weighsés. For its proof, we first
observe that every graph has a minimum cycle basis corgistily of circuits: Indeed, if there
is a cycleC in a basis# that is not a circuit, theg is the union of two cycle€’ andC” of
smaller weight. Then —C+C’ and% — C + C” have smaller weight tha and at least one
of them is a basis.

Lemma 19 ([dP95). A set of cycle§Cy,...,C, } is a minimum cycle basis if there are vectors
Si,...,S € {0,1}F such that?

(@ (S,Cj) =0for1<i<j<v,
(b) (§,G) =1,
(c) G is ashortest circuit withHS,C) = 1.

Proof: Let k be maximal such tha®x = {C;,...,C«} is contained in some minimum cycle
basis and assume, for the sake of a contradictionkthat. Let%#' = {C;,...,Cy,Dks1,...,Dy }
be a minimum cycle basis extendigg,. Then

Ckr1 = i;()\ici + i;()\i Di (18)

11y denotes the inner product of vectors.

68

and hence

1=(541,Ct1) = Z(Ai (S1,Di)-

1>
Thus there must be ah> k with A; = (S¢;1,Dy) = 1. By (¢),W(Cx:1) < w(Dy). Solving (8)
for D, gives a representation B, in terms of " = %'\ { D, } U{ Cx.1 }. We conclude tha®8”
is a basis of weight no larger thad'. Thus there is a minimum basis extendi#, ;. 0J

We next describe a probabilistic check of conditions (a), @md (c) that operates in time
O(n?). The following observation will be useful.

Lemma 20 (JAIJ T09]). LetA,..., A, S€ ZE. Then
(A, S =1forsomeil<i<k = prob((AALS) =1)=1/2,
k

1<i<

where the);, 1 <i <k, are chosen independently and uniformlyin

Proof: Assume(A,,S) = 1. Then for any choice of th, i # ¢, there is exactly one choice for
Agsuchthat(y i< AiA,S) = 1, namelyAd, = 1+ (3 AiA, S).
Alternatively, we observe that
(> AALS

1<i<k

is the inner product of a random vectan, . . ., Ax) with the nonzero vectdi(Ay,S), ..., (A, S)
and then appeal to Lemnia. O

We first show how to verify properties (a) and (b). lbdbe matrix whose rows are the vectors
SI to S and letB be the matrix whose columns are the cydledo C,. We need to verify that
E :=AB s a lower-diagonal matrix with ones on the diagonal. Priypéb) is easily verified
in time O(vm) = O(m?). We simply compute the product§,C;) for 1 <i < v. We turn to
property (a). The solution lies in Lemn2®. Consider the above-diagonal elements in jtik
column, i.e., the elements j fori < j. One of these elements is nonzero if and only if one of
the vectorsS, to §j_; is non-orthogonal t€;. Lemma20is a probabilistic test for this property.
We choose random numbetse Z,, 1 <i < n, and form the vectors

Ri=>AS, 1<j<n
i<J

These vectors can be computed in total ti@(@m). We next form the products
(R;,Cj), 1<j<n.

If one of these products is nonzef®,s not a lower-diagonal matrix. Converselydfis not a
lower-diagonal matrix, then with probability at least dmal, one of these products is nonzero
by Lemma20.

We next turn to condition (c). A circul® is isometricif for any two verticesu andvin C, a
shortest path connectingandv is contained irC.

69

Lemma 21 (Hor87]). A minimum cycle basi% consists only of isometric circuits.

Proof: We argue by contradiction. Suppo8eis not an isometric cycle but contained in a
minimum cycle basis’. Then there are verticasandv in C such thatC does not contain a
shortest path connectingandv. Let p be a shortest path connectingndv and splitC atu and

v into C; andC,. ConsideiIC’ = C; + p andC” = C, + p. Both cycles are cheaper th@nand
either —C+C' or #—-C+C" is a basis. O

The argument of the proof also shows that any cycle thatl&tfidndition (c) in Lemmd.9
is an isometric circuit. To certify condition (c), we assufoesimplicity from now on that the
shortest path between every two vertices of the input grapmique; such a situation can be
simulated by adding a random infinitesimally small weighet@ry edge. For further details
see AIJT09).

Lemma 22 (JAIJ 709]). LetC be an isometric circuit. Then for eacke\C there is an edge &
xy € C such that C consists of the shortest paths from v to x and yrenedge e.

Proof: Consider any edge ie= xy of C. SplittingC\ e atv gives us a pathy,x and a pattuy,y.
There is a choice oé (there might be two) such that both paths have weight at m(Sj/2.
SinceC is isometric, it contains a shortest path connectingx and a shortest path connecting
vtoy. These paths must lapx anddgy,y, respectively. O

We use the following witness for supporting the check of c¢oowl ().
e For each vertex, a shortest path trek rooted atv.

e AlistL=(Dy,...,Dn) of circuits that allegedly contains all isometric circuit$e circuits
are sorted by weight and the total size (= number of edgeggdfitcuits inL is at moshm

e Foran edge= xyand a vertex letC,e = pvx+ €+ pvy, Wherepyy is the path fronv to x
in Ty. For eache andv, the algorithm provides a link to a circuit € L with D =Cye 0r a
proof thatC,e is non-isometric. The proof is a pdia, b) of vertices orC, e such that the
shortest path connectir{g, b) is not part oiC,e.

The algorithm in AlIJT09] computes such a listand the additional information stipulated above.
Verification is as follows.

We first verify that the trees are shortest paths trees asidedan Subsectio2.4; we then
verify that all elements of are circuits, and that the total size of the circuitdins nm We
then choose for each edgea random label(e) € Z, for a primep (p = 2 is sufficient) and
precompute for eachand each node of Ty, the sum of the labels of the edges on the path from
v to x and for eactD in L the sum of the labels of the edgesDn This takes timeéD(nm). For
eache = xy andv we perform the following test:

70

o If Cyeis linked toD in L we compute the label @, ¢ (as the sum of(e) and the labels
of the endpoints o€ in Ty) and compare it to the label &f. If the labels are different, we
reject. The probability of failure to dete@,e # D is bounded by 1p.*? (This test was
proposed in\WC81] as a general method for verifying equality of sets.)

e If C,eis claimed to be non-isometric artd, b) is provided as a proof we verify thatand
b lie on the pathg,x U pyy Wheree = Xy, saya lies on the former path anallies on the
latter. If a andb would lie on the same path, we reject, since subpaths ofestquaiths
are shortest. We then compute the lengths of the two patBginonnectinga andb (one
is W(pya) +W(pyp) and one isv(e) +wW(pax) +W(pPpy)) and verify that these length are
larger thanw(pap). If not, we reject.

We have now verified that contains all isometric circuits. It remains to verify thaet
circuits selected satisfy (c). Let={Dj,...,Dn } and recall that is sorted in order of increasing
weight. We choose a randoij € {0,1} for eachj and for eact?, 1 < ¢ < N form the sum
> i<¢AjDj. Foreach, 1 <i <y, letC = Dy). Verify

.S)=1and(¥ A;D;.§)=0.

j<m(i)
By Lemma20, the latter test fails with probability/2 if there is aj < (i) with (D;,S) = 1.

Theorem 13. The witness for minimum cycle bases defined above can beechatkroba-
bilistic time Q(m?). The minimum cycle basis algorithm @fIJ*09] can compute this witness
without loss of efficiency.

10.5. Definitions

We extend the definitions and theorems of Sectaie randomized algorithms. Arob-
abilistically checkable strong witness predicdte an I/O-specification¢, y) is a predicate
. X x Y+ x W satisfying the following properties:

Strong Witness Property: Let (x,y,w) € X x Y+ x W satisfy the witness predicate.yi=1, w
proves thak does not satisfy the precondition ang i Y, w proves thatx, y) satisfies the
postcondition, i.e.,

(Y=L AZ' (X,y,W)) = —¢(X) and

YEY A (xyw) = P(xy) (19)

\V/X, y,Ww

Randomized Checkability: For a triple(x,y,w) there is a trivial way to determine the value
W (X, y,w) with high probability. I.e., there is a trivial randomizeldarithm that computes
W (X,y,w) correctly with probability at least/3l and this bound on the error probability is
trivial to understand.

12 etC andD be subsets d with C # D. Letey € C@® D be an edge in the symmetric differenc&aindD. Then
for each choice of labels of the edgedHn e, there is exactly one choice féfeg) such thats ecc £(€) = Secp £(€).

71

Simplicity: The implications {9) have a simple proof.

The first and the last item are as in SectbnObserve that the checker is allowed to reject a
correct output and witness or accept a wrong output and sstnéth probability 4. The latter
is important; otherwise the construction of Subsecfibriwould apply.

A randomized strongly certifying algorithfar 1/O-specification ¢, ¢/) and probabilistically
checkable strong witness predicateis an algorithm with the following properties:

e It halts for all inputsx € X.

e Oninputx € X it outputs ay € Y+ and aw € W such that# (x,y,w) holds with probability
at least 7/8.

The simplicity and checkability consideration of Subsatt.5apply.

The definition above captures all examples given in this@ectWWe illustrate this for our last
example: minimum weight cycle bases. The inpig an edge-weighted undirected graph &nd
is a set{Cy,...,Cy } of v =m—n+ 1 circuits inG. The witness consists of vectdss, ..., S,
of vectors in{0,1}F, a listL = {Dy,...,Dy } of circuits, and some more stuff. In order for the
witness property to hold, the listmust contain all isometric circuit$s,Cj) = 0 fori < j, and
Ci is a shortest circuit oh whose inner product witly is one. The checker may fail to verify
the latter property (and the algorithm may fail to deliveead circuits with the latter property);
in this situation{Cy,...,C, } is a basis, but not a minimum weight basis.

We next define the notions of mndomized certifying algorithrand randomized weakly
certifying algorithm A probabilistically checkable witness predicate for aD-Bpecification
(¢,) is a predicate? : X x Y- x W satisfying the following properties.

Witness Property: Let (x,y,w) € X x Y+ x W. satisfy the witness predicate.yif=_1, w proves
thatx does not satisfy the precondition ang/ i Y, w proves that eithex does not satisfy
the precondition ofx,y) satisfies the postcondition, i.e.,

(Y=L AZ (X, y,w)) = —¢(X) and

VX,y,W (er/\W(X,y,W» — —|¢(|>\/l'U(X,Y)

(20)

Randomized Checkability: For a triple(x,y,w) there is a trivial way to determine the value
7 (x,y,w) with high probability. I.e., there is a trivial randomizedarithm that computes
(x,y,w) correctly with probability at least/3l and this bound on the error probability is
trivial to understand.

Simplicity: The implications 20) have a simple proof.

Items 1 and 3 are as in Sectién

A randomized certifying algorithm for 1/0O-specificatidg,) is a randomized algorithm
with the following property: For all inputs € X, it halts and outputs < Y+ and aw € W such
that’? (x,y,w) with probability at least 78.

A randomized weakly certifying algorithms for I/O-specéion (¢,) is a randomized al-
gorithm with the following properties:

72

e Forinputsx € X satisfying the precondition, it halts with probability atist 7/8.

e If it halts onx € X for some choice of randomness, it haltsoand outputs g € Y+ and
aw € W such that# (x,y,w) with probability at least 78.

An early version of the definition of randomized certificatiman be found in$ch09, where
also complexity classes based on randomized certifyabtgydefined. For a restricted com-
putation model it is shown that the gap in the best runningsifbetween a randomized and a
deterministic certifying algorithm can be arbitrarily diex.

We next generalize Theorem Theoremb is the special cas¢ = T and hence also general-
izes. Let(¢,) be an 1/0-specification and I€tbe a randomized program (in a programming
languagd. with well-defined semantics) with 1/0-behavi@p,).

We need to make an additional assumptiorPpnamely thaP computes a partial function.
Let f : X — Y be a partial functionP computesf if for any x € X, f(x) is defined if and only
if P halts onx for some choice of randomness. Moreovef, (k) is defined P outputsf (x) with
probability at least 7/8. We comment below, why the assupmgthatP computes a function is
needed. We assume that we have a proof (in some formal sBtenthe following statement:

if P halts onx for some randomness,
it halts onx with probability at least 7/8 and

there is a valud (x) that is output with probability at least 7/8 and (21)
and satisfies:¢ (x) V ¢(x, f(x)) and
¢ (X) = P halts on inpu with probability at least 7/8.

We usew, to denote the proof. We extefto a progran@Q which on inputx does the following:
If P halts on inpuk, Q outputsP(x) and a witnessv = (wy,W») wherew; is the program texi
andws is a proof for @1).

The witness predicaté¢’ (x,y,w) holds ifw has the required format, i.av,= (wy,w,), where
wy is the program text of some prograPnws, is a proof for 1), andy = f(x), wheref is the
partial function defined bfp.

The following randomized algorithi@® decides the witness predicate. On inpxty,w), it
first checks thatv, is a proof of 1) whereP is given byw;. It then runsP on x for k different
choices of randomness (tkeuns are performed in paralleRwill be fixed below. Ifk/2+ 1 of
the runs retury, the checker stops and accepts. Otherwise, it rejects srfanever.

1. # has the witness property: W (x,y,w), (21) holds and henc® computes a function;
callit f. Also,y = f(x) by the definition of#".

2. Cdecides?”: SinceC checks the proofi;, we may assume th&satisfies21). If P never
halts onx, C diverges. IfP halts onx for some randomness, it halts gand returnsf (x)
with probability at least 78. The probability that, amorigruns ofP, k/2 or more produce
an output different fronf (x) is at most

306G 306 =0 () ()

73

where the last inequality holds f&r> 4. Thus ify = f(x), pro(# (x,y,w)) > 3/4 and if
y # f(x), prot# (x,y,w)) < 1/4. ThusC decides?” .

3. Simplicity: The arguments in the preceding items ardgttéorward.

4. Efficiency: The running times @ andC are asymptotically no larger than the expected
running time ofP. Consider a particulacron whichP halts for some choice of randomness.
ThenP halts onx with probability at least 7/8. L€l be the expected running time Bfon
X, where we average over the halting runs. Then only a frad#id@ of the halting runs can
take more than ID steps and hende halts onx within 10T steps with probability at least
(9/10)/(7/8). A small adaption of the computation in 2) shows that suffitiemany
runs ofP stop within 10 steps. The same argument holds true for the space complexity

We summarize the discussion.

Theorem 14. Every randomized program computing a function has an effieweakly certifying
counterpart. This assumes that a proof fad)in a formal system is available.

How important is it thaP computes a function? Consider the following randomized-alg
rithm. It takes as an input the description of 10 Turing maekiand produces 10 random bits.
The postcondition is that for at least onéhei-th bit tells whether thé-th Turing machine halts
on empty input. This postcondition is satisfied with protiabil — 1/21°. There seems to be
now way to boost the success probability of this program tighdr value and there seems to be
now way to check the output of this program.

11. Certification and Verification

We give examples where certification and verification carpsupeach other. Some proper-
ties of the algorithm are more easily verified and other areemeasily certified.

Sorting:. The example is due to Gerhard Goos (personal communicafitwe)input to a sorting
algorithm is a set of elements from a linearly ordered seé ditput is the same set but in sorted
order. Sortedness is easily checked and for a subclasstofgsalgorithm integrity of the input
is easily verified.

It is trivial to check that a sequence of elements is sorigyljrsascending order. We simply
step through the sequence and check that we see succesaigelyelements. It is difficult to
check that two sets agree. In fact, the most efficient way ézklequality of sets is to sort them
and check equality of the sorted sets.

General sorting algorithms frequently use a subrousiwapthat exchanges the position of
two elementsswapis an extremely short program (less than three lines in magramming
languages) whose correctness is obvious (and is also gasirgn). Any program which only
uses (a correcgwapto move elements around, outputs a permutation of its ingut s

74

Minimum Cut:. Our second example is more subtle. A cut in an undirectedgéap (V,E) is
any subseg of the vertices which is neither empty nor the full set of wo&s$, i.e., 0~ S# V.
Let ¢ be a cost function on the edges®f The weight of a cuSis the total cost of the edges
having exactly one endpoint [i.e.,

c(S) = Z c(e).
glens=1

A minimum cut is a cut of minimum weight. We do not know of a dezate for minimum cuts.
There is a very efficient Monte Carlo algorithm for computanminimum cut KS96. Here, we
consider the following generic approach to computing a mur cut.

The algorithm works recursively. It uses a subroutine, Whidoes the following: it deter-
mines two vertices andt (s andt are not input to the subroutine, but the subroutine detexmin
them) and a cu® which is minimal among all cuts containirsgout nott. Assume that we call
the subroutine foG and it returnss, t and a cutS. There are two cases: eith®is a minimum
cut in G or the minimum cut inG does not separateandt. In the former case we are done
(however, we do not know this) and in the latter case, we mdlgmses andt into a single
vertex, i.e., remove andt from the graph, add a new vert@and for anyw € V \ {s,t } assign
c(s,v) +c(t,v) as cost of the edgé (z,v), and determine a minimum cut in the reduced graph.
The minimum cut in the reduced graph will also be a minimumicuhe original graph (after
replacingz by { s,t }). An iterative version of the algorithm is as follows:

while G has at least two vertica
determine two verticesandt in G and a cutSwhich is minimal among all cuts containing
S but nott;
collapses andt.

end while

output the smallest cut found in any iteration;

Given the correctness of the subroutine, the algorithmiigect Stoer and Wagne®8V91,
simplifying an earlier algorithm of Nagamochi and Ibaraki92], gave an efficient algorithm
for the subroutine. Arikati and MehlhordM99] made the subroutine certifying. The certifying
version computes, t, the cutS and a flowf from sto t of valuec(S). The flow proves the
minimality of Sby the min-cut-max-flow theorem (Lemn7a

12. Reactive Programs and Data Structures

Reactive programs run forever. They keep state informatrahreceive inputs. They return
outputs and update their internal state. In the algorithomaraunity, reactive programs are
called data structures and this is the terminology which rgegaing to use. The pape&l[94,
BEG"94, SM90, SM91, BS95 BSM95 SWM95 BS94 FM99] discuss certification of data
structures.

130f course, ifv is not connected to eitherort, there is no need for introducing an edge connectiagdz.

75

CheckerC

Datastructurd®

Certified data structur&

Figure 19:D is a data structure implementation danonitors its behavior. Any input is passed@avhich then
forwards it, maybe in modified form tB. D reacts to it,C inspects the reaction @ and returns an answer to
the environment. ID is correct, the combination & andD realizes the abstract data typeIf D is incorrectC
catches the error.

We distinguish between abstract data types (= specifiatbthe intended behavior of the
data structure) and implementations (= programs exhgpdigertain behavior). The question is
how to certify that a certain implementation implements date data type. Akin to certifying
programs, we consider certification of data structures.

We explore the following scenario, see Figli@ We have an abstract data typea data
type implementatiol allegedly realizing an abstract data tyfye and a monitor or checkés.
The checker monitors the execution of the data struduid/e may also call it a watchdog. The
pairC + D is supposed to implement the behavoas follows: The checke® interacts with the
environment and offers the interface of the abstract dqgeAy It also interacts withD through
the interface of\. The purpose of the checker is twofold:

e The checker offers the behaviarto the environment. It makes usebfto do so. Ideally,
all the hard work is done bl andC is only a simple interface layer.

e It checks thaD correctly implements#\'. If D doesC is supposed to keep quiet.Dfdoes
not,C must raise an exception. This may happen immediately orteatiy It the former
caseC must raise an exception immediately after the first incamreaction byD, in the
latter case, the exception may be delayed and only must coemeually.

We callC a monitor that realizes the abstract data typi@ terms of the abstract data typé
Such a monitor is useful whenever the implementatioA’@$ unknown or untrusted.

The abstract data typ& should be at least as strong Asotherwise, we would not speak
of checking but of enhancing. In the interest of certifydpiit may be necessary to maké
stronger tharA. The stronger behavior may be easier to check. This is akinetsituation for
algorithms. In order to achieve certifyability, we solve ammgeneral problem.

76

We denote operations performed Drby D.op(argumentlist and operations performed on
the abstract data type lop(argumentlis}.

We will present the following results: There is a checkerdadered dictionaries= A’ =
ordered dictionary) that catches errors immediately art$ @41) overhead to each dictionary
operation. Since ordered dictionaries are stronger thamifgrqueues, we may also use the
checker withA = priority queue and\' = ordered dictionary. So ordered dictionaries are fairly
easy to check.

For the second class of results we h@ve: A’ = priority queue. We will see that there is
checker withO(1) amortized overhead per operation that catches errorsuealnt-M99]. We
will also see that a checker that wants to catch errors imatelgi must incur an amortized
logarithmic overhead per operation. This is also the cogtriofrity queue operations. In other
words, priority queues are hard to check and a checker thatswa catch errors immediately
must essentially implement a priority queue by himself.

12.1. The Dictionary Problem

The dictionary problem for a univer&e and a set of informations asks to maintain a sgt
of pairs(x,i) € U x | with pairwise-distinct keys (= first elements) under operainsertx;i),
deletéh), find(x), setinf (h,i), key(h) andinf (h). Here,h is a handle to (= pointer to) a pair in
the dictionary.

Insert(x, i) adds the paifx,i) to Sand returns a handketo the pair in the data structure. If
there is already a pair i8 with key x, the information of the pair is replaced by Deleteh)
deletes the pair with handleand invalidate$; h must be a valid handle of a pair # Find(x)
returns a handle to the pair with key(if any) and returns a special elemeamt otherwise,
setinf (h,i) sets the information of the pair handled byo i, andkeyh) andinf (h) return the
key and information of the pair handled hyrespectively. If any of operations above is supplied
with an invalid handle, the outcome of the operation anduddsgquent operations is unspecified.

In the ordered dictionary problem, we assume thais linearly ordered and require the
additional operationecatgx) andfindmin). The former returns a handle to the pgir) € S
with minimal keyy > x, if there is such a pair. Otherwise, the special vatiles returned.
Findmin() returns a handle to the pair Bwith minimal key. If Sis empty, it returnsil.

Checking Ordered Dictionaries with Constant Overheadle show that ordered dictionaries
can be checked with constant overhead per operation. Erersaught immediately.

Let D be the alleged implementation of an ordered dictionary ah8 be the set stored in
the dictionary. The checker maintains a doubly-linkeddistriples(x,i, h) sorted by key. There
is one triple for each paiix,i) € S, his a handle to an item iD. The item handled bl contains
the pair(x,r), wherer is a handle to the tripléx,i,h) in L. In other words, corresponding pairs
in D andL are linked to each other aridcontains the pairs i® in sorted order. How do we
make sure that is a handle intd- and not a handle to some uncontrolled location in memory
which by accident points back ©@. The standard solution for this problem is to stbra the
first |L| entries of an array A, one list item per entry of the array. The handlis accepted if
it points into the firsiL| entries ofLA. After a deletion fromL, the element in positiobA[|L|]
of LA is moved to the position of the deleted element. The crosstgrs betweeh andD are

77

changed accordingly; for the changeDnthe operatiorD.setinf (h,) is used. We next discuss
the implementations of the operations:

Insert(x,i): The checker call®.locategx) andD returns a handli or nil. In the former case
h points to a paify,r); C usesD.keyh) andD.inf (h) to read ouy andr. If r does not point into
L, C declares failure. Letz, j,h) be the entry ot handled byr. If i # hor z#y, C declares
failure. Otherwise, it checks that< y and thatx is larger than the key in the triple preceding
(y, j,h). If not, the checker declares failure.yi= x, it replacesj by i, and ifx < y, it inserts a
triple (x,i,) into L just before the triple with key. Letsbe a handle to this triple. Next it inserts
(x,s) into D and stores the returned handle in the triple with hasdlé returnss. If D returns
nil, C checks thak is larger that the key in the last item bf If not, C declares failure. If so,
it inserts a triple(x,i,) into L after the last item of. Letsbe a handle to this triple. Next, it
inserts(x, s) into D and stores the returned handle in the triple with hasd@returnss.

Deletds): sis a handle to an itenfx,i,h) in the listL. We remove the pair with handte
from D and we remove the iterfx, i, h) from L.

findmin(): The checker call®.findminand obtains a handleto a pair(x,r). As above the
checker checks that the pairlinhandled byr is equal to(x, ,h). It also checks that handles
the first element ok. If so, it returnsr.

We leave the implementation of the other operations to thdee

Ordered dictionaries can be used to sort. Somiitgms take€2(nlogn) comparisons. There
is a nice division of labor. After the insertion afelements, the checker has the sortedUisf
the elements. However, it has performed o@i§n) comparisons. The hard work of locating a
new element in the current list is done By thenC performs two comparisons to verify thiat
did not lie. In the next section, we will show that the intedeof priority queues is too narrow
and does not allow a similar division of labor.

12.2. Priority Queues

A priority queue offers the operatiomssert(x,i) anddelmin). Delmin returns and deletes
pair with minimum key. The priority queue operations are bs&i of the ordered dictionary
operations and hence the construction of the precedingprestalso a monitor that realizes
priority queues in terms of ordered dictionaries.

In this subsection, we will discuss monitors that realizenty queues in terms of priority
queues. We will show that there is a checker which reportwemwith delay. The checker has
constant overhead. We also show that any checker whichesagrhors with no delay, mustincur
logarithmic amortized cost per operation.

A Checker with Delay: We review a construction given irM99]; [MN99, Section 5.5.3] con-
tains all implementation details. There is a simple butfioeint way for monitoring a priority
gueue. After ever.findminoperation, we simply check that the reported priority issheall-
est of all priorities in the queue. This solution does the ol defeats the purpose as it adds
linear overhead. We will reduce the overhead at the expensa&tching errors delayed. When

78

(0] (0]
(0] ©®
(0]

TR

Figure 20: In the top part of the figure the items in a prioribegeD are shown as circles in the-plane. The
x-coordinate corresponds to the insertion time of the itechthay-coordinate corresponds to its priority. The lower
bounds for the priorities are indicated as heavy horizdimtas. The lower bound for the last two items-ige. The
lower part of the figure shows the data structures of the adredke listL has one item for each item I, the list
Shas one item for each step, and the union-find data struBPanteconnects each item in to the step to which it
belongs. The blocks d?art are indicated as ellipses. Each elemerf kmows the lower bound associated with the
step and the last item Inbelonging to the step.

aD.findminoperation is performed, the checker will record that athisecurrently in the queue
must have a priority at least as large as the priority reploriée actual checking is done later.

Consider Figure0. The top part of this figure shows the items in a priority qu&am left
to right in the order of their insertion time. Thecoordinate indicates the priority. With each
item of the priority queue we have an associated lower boihe.lower boundfor an item is
the maximal priority reported by ary.findminoperation that took place after the insertion of
the item. D operates correctly if the priority of any item is at leastagé as its lower bound.
We can therefore chedR by comparing the priority of an item with its lower bound whitie
item is deleted fronD.

How can we efficiently maintain the lower bounds of the itemthie queue? We observe that
lower bounds are monotonically decreasing from left to triggmd hence have the staircase-like
form shown in Figure20. We call a maximal segment of items with the same lower bound a
step How does the system of lower bounds evolve over time? Whewatem is added to the
gueue its associated lower bound-i® and when &.findminoperation reports a prioritp all
lower bounds smaller thap are increased tp. In other words, all steps of value at mgsare
removed and replaced by a single step of vglu&ince the staircase of lower bounds is falling
from left to right this amounts to replacing a certain numbiesteps at the end of the staircase
by a single step, see Figuz4.

We can now describe the details of the checker. It keeps arlirgtL of items, one for each
item in D. As in Section12.], the items inL and the items irD are cross-linked. The lidt is
ordered by insertion time. The checker also keeps &lidtsteps and a union-find data structure

79

Figure 21: Updating the staircase of lower bounds aftermtémpa priority of p. All steps whose associated lower
bound is at mosp are replaced by a single step whose associated lower boymnd is

Part for the items inL. The blocks ofPart comprise the items in a step and a block has a pointer
to the element irsrepresenting the step. An item3stores the lower bound associated with the
step and a pointer to the last elemenLihelonging to the step, see Figute

When an elementx,i) is inserted into the queue, the checker forwards the imgett D,
adds an item td., cross-links the two new items, and adds the new iter ia the step with
lower bound—. If this step does not exist, it is created.

When an element is deleted, the checker deletes the condisggatem inL, uses the union-
find data structure to find the step to which the item belongd v&rifies that the priority of the
item is at least as large as the lower bound stored with thpe ste

When aD.findmir() reports a priorityp, all steps with lower bound at moptare united into
a single step. The relevant steps are found by scar8firagn its right end. The union-operations
are initiated by going from the element 8to the last item irL that belongs to the block and
then calling the union operation of the union-find data dtrec

A Lower Bound for On-Line Checkersie prove that any checkérthat catches errors with no
delay, must incur logarithmic amortized cost per operaitidhe worst case. We will use the pair
C+ D to sortn elements by performing the sequence

insert(ay);...;inserfa,);delmin();...;delmirn().

The pairC + D must perfornQ(nlogn) comparisons to execute this sequence correctly. We will
show thatC must performQ(nlogn) comparisons. We use the lower bound technique developed
in [BCR9G. We make the following assumptions about the checker:nihoainvent elements,
i.e., only arguments of insert operations can be passed tmetdata structure for insertion.
However, not all arguments need to be passed on. Similastyalhdeletions need to be passed
on. In this way the set of elements storedDnis a subset of the elements inserted by the
environment. We us§y to denote the elements storeddrandS, to denote the elements stored

in A. The lower bound is through an adversary argument. The sdrefixes

1. the outcome of the comparisons madeChyWe use<c for the partial order determined
by C.

2. the outcome ob.delmin() operations.

Of course, any answer of the adversary must be consistemfpnetzious answers. The checker
interacts with the environment and with It has the following obligations.

80

1. With respect to the environment, it must implement a fisiaqqueue, i.e., everdelmir()-
operation must return a handle to the minimum elemehin

2. With respect to the data structure, it must catch erroreediately, i.e., before the next
interaction with the environment. In other words, afterrgvB.delmin)-operation,C
performs some comparisons and then either accepts orgéfecanswer ob. Let m be
the priority returned by th®.delmin)-operation. Ifmis the minimum ofSy, C must
accept the answer, andnfis not the minimum ofp, C must reject the answer.

There are two situations, whe@ecan readily decide. Ifnis the minimum ofS under<c,
C may accept, and imis not a minimal element di under<c, C must reject. We next show
thatC cannot decide with less knowledge.

Lemma 23. When C accepts the answer m of alBlmin), m must be the minimum of Svith
respect to<c, and if C rejects, m must not be a minimal elementoiWgh respect to<c.

Proof: Consider the first operatidd.delmin(), where the claim is false. Th&haccepted the
outcomes of all previouB.delmin()-operations and hence their answers were determinegtby
at the time of their acceptance and hence by the curent

Assume now tham is a minimal element 0§y with respect to<c, but is not a minimum.
Then there are linear extensiorg and <, of <¢, one havingm as the minimum and one
not havingm as the minimum. Consider now the execution of our algorithmxae and <.
Since both orders extendc, the answers of all previous operatiddsielmin() are still correct.
However, undek , the answer to the curreBtdelmin()-operation is correct and undes, the
answer is incorrect. Thusc does not contain sufficient information fGrto decide. O

The interactions with the environment are completely deteed by the sequence of inserts,
deletes, and the comparisons madeCbyin particular, whenever an environmeggmir() is
answeredg<c must determine a unique minimal elemengi However, which comparisons are
made byC depends on the outcome of thedelmin() operations. Itis last sentence which forces
us to continue the argument. It is conceivable, that theaonécof theD.delmin() operations
guides the checker to the right comparisons. This was theioabe subsectioh2.1where the
checker needed only two comparisons to insert a new elerhdre eght position. The interface
of priority queue is too narrow to support a similar approach

We next define the strategy of the adversary in a way similfB@R9q4. In [BCR9q, the
adversary only needs to fix the outcome of comparisons made Iynow also has to fix the
outcome ofD.delmin() operations. Since the adversary needs to stay consistemnitself, this
will fix outcomes of future comparisons made®yThe strategy ofBCR9q is as follows: The
elements sit in the nodes of a binary tree; we ¥s@ to denote the node containixgand/(x)
to denote the depth of the nodex). The number of comparisons made®wvill be Q(5,4(x)).
We say that an elementsits left of an elemeny if and only if there is a node such thai sits
in a left descendant of andy sits in a right descendant of There are three possibilities for
two elementsc andy. Eitherx sits left ofy or x sits right ofy or x andy sit on a common path,

81

i.e., in nodes where one is an ancestor of the other. Theaparter on the elements as follows:
x is smaller thary if and only if x sits left ofy. If x andy sit on a common path, the order is
still undecided. All linear orders compatible with the ant partial order can be obtained by
moving elements down the tree until no two elements sit onnancon path. An insert puts the
new element into the root.

When elementg andy are compared and

e xandy sit in the same node, we move one to the left and one to the right
e X Sits in a proper ancestor gfx is moved to the child which is not an ancestowypf
e Xx andy sit in nodes of which neither is an ancestor of the other, neen®required.

Then the outcome of the comparison is as defined above.

Lemma 24. If x < y follows from the answers of the adversary then x sits left of

Proof: If x < yfollows from the answers of the adversary, there are eleszgrt, . ..,z such
thatx = z9, y = z, andz was declared smaller than, 1 by the adversary for & i < k. After
z was declared smaller than, 1, it sits left ofz 1 in the tree. As elements only move down, it
stays to the left of, 1. Thusx sits left ofy in the tree. O

How does the adversary fix the outcome @ aelmir() operation? By Lemma3, the only
logical constraint is that the outcome must be consistettit wi¢. Consider the elements By
and how they are distributed over the treeSjf= 0, no action is required. Otherwise, we define
a tree-patlp and call it theD-min-path It starts in the root. Assume that we have extenpeg
to a nodev. If no elements irgy are stored in proper descendanty,dhe path ends. If some are
stored in the left subtree, we proceed to the left child, wtise, we proceed to the right child.
The elements o%p lying on p are exactly the elements &, which are minimal elements with
respect to<c. Observe that the D-min-path changes over time. Ler2gtalls us that whenever
C accepts the outcome offadelmin)-operation, the D-min-path must contain a single element
in $H.

The adversary fixes the outcome®fdelmin() as follows: it returns an elementin S in
the highest (= closest to the root) non-empty node @dr which the left child is not orp; non-
empty means that the node contains an eleme# of his node exists since the last nodeo$
a non-empty node for which the left child is not pnif mis the only element 0% stored onp,
the adversary is done. Otherwise, it implicitly movaso the left child ofv and all elements of
S different fromm sitting in ancestors of and includingv to their right child. We say that the
elements are moved implicitly, because these moves aremitdmC. The adversary commits
to these moves but it does not make them yet. It makes them thibezlements are involved in
a comparison explicitly asked for Ify. Let R be the set of elements moved in this way. When
an element irR is involved in the next comparison, the adversary actuafqrms the hidden
move and then follows the Brodal-et-al strategy. ket |R| > 1. We will show thatC has to
makeQ (k) comparisons before it can accept the outcom.delmir().

82

Consider the comparisons made®ypetween the call t®.delmin() and the commit to the
answermm. By Lemma23, m must be the minimum o under<c whenC acceptan. Thus at
the time of acceptance , tli&min-path contains a single element. We now distinguislesas
R\ mis non-empty oR= {m}. In the former case, assume that there is an elemdRy mthat
is not involved in a comparison made Bybefore the time of commitment. Then this elements
still sits in an ancestor of the node containimgat the time of commitment and hence its order
with respect tanis still open. ThusC cannot commit, a contradiction. We conclude that if the
adversary performk hidden moves, we can charge them to at léékt- 1) /2] comparisons
made byC made before it accepts.

If k=1, we have to argue differently. In this case, no other elénmeBp is stored in an
ancestor of or at the node containimg However, in this case, the-min-path extends beyond
the node containingn (otherwise, we would be in the situation that the D-min-pathtains a
single element o&y) and henc& must perform a comparison involving before it can accept
m.

In this way, we charg®(1) moves to a single comparison. More precisely, we charge st mo
five moves to a single comparison. The worst case occurs WkeB. The adversary performs
three hidden moves; performs one comparison and this results in two more moves.

It is now easy to complete the lower bound. We consider theesecg

inserta);...;inserta,);delmin();...;delmir();

This sequence sorts. When a delmin is answered, the elemembed must be the unique
minimum on the A-minimum path (this is the path containing potential minima undetc in
Sn). Thus there is no element stored in an ancestor of the ekenetemned. By the definition of
the adversary strategy, this is also true at the end of dparsequence. Let be the depth of the
element returned by theth delmin-operation at the end of the execution. 'Iiﬁqwi > nlogn.
Since any comparison made Byincreases the surp; ¢ by at most five, we conclude th&t
performs(1/5)nlogn comparisons.

Theorem 15. In the comparison model, any checker for priority queuesctvineports errors
immediately, must perforifi/5)nlogn comparisons.
13. Teaching Algorithms

The concept of certifying algorithm is easily incorporatetb basic and advanced algorithm
courses. We believe that it must be incorporated. In our @eaatting we have used the following
approach.

MLetvy, ..., vy bennodes in an infinite binary tree, no two of which are ancestbesach other and let be
the depth ofvi. Theny ¢ > nlogn as an easy induction shows. The claim is clearrfer 1. Assume now that
n> 1 and thah; andn, elements lie in the left and right subtree, respectivelyer§y, i<, (¢4 — 1) > nilogny and
> n+1<i<n(fi —1) > nzlogng by induction hypothesis. Thus

n ng n n
Z& > n+nzlogn; +nz2logn, = nlogn+ n(1+F1 IogFl + FZ IogFZ) > nlogn.
I

83

1. We present a certifying algorithm whenever possibleoltartifying algorithm is known,
we present its design as a research problem. If only an irefticertifying algorithm is
known, we present it together with the more efficient noridy@ng algorithm and present
the design of an efficient certifying algorithm as a reseg@rdblem.

2. When we discuss the first certifying algorithm, we spentketon motivation (SectioB)
and usefulness (Sectia.

3. If the theme of integer arithmetic fits into the course, wplain that checking a divi-
sion through multiplication and checking a multiplicatitmough the method of “casting
out nines” (see SubsectidiD.? are ancient examples of certifying the correctness of a
computation.

4. If the computation of greatest common divisors fits inte dourse, we treat the basic
and the extended Euclidean algorithm as examples of a nuifiyizey and a certifying
algorithm (see Subsectiéh3).

5. In some advanced courses, we have discussed the theoeytibfing algorithms (Sec-
tion 5) and/or general approaches to certifying algorithms (8e&).

6. In courses on linear programming, duality is discusseal gasneral principle of certifica-
tion (Subsectior.?2).

As course material, we have used draft versions of thislartin the future, we will use this
article. Also, the recent textbook by Mehlhorn and SanddiS(g uses the concept of certifying
algorithms.

14. Future Work

Open problems are numerous. Any algorithmic problem forcWtihere is no certifying
algorithm or only a certifying algorithm whose running tinseof higher order than the known
best non-certifying algorithm is an open problem. Our peasdavorites are 3-connectivity of
graphs (see Sectidn4), arrangements of algebraic curves, shortest paths irldéine pr in space
in the presence of obstacles, and the algebraic numbergaeskaLEDA and CGAL.

We would also like to see advances in formal verification ofifyeng algorithms. For most
algorithms mentioned in this paper, it should be feasiblgive a formal proof for the witness
property and for the correctness of the checking progranadBjkassar, Christine Rizkallah,
Norbert Schirmer, and the second author have recently gineh proofs for the maximum car-
dinality matching problem (see Secti@rb) in Isabelle [sg and VCC VCC], respectively.

Also, our definition of certifying algorithm should be recitered. We mentioned that some
fellow researchers feel that Theoremsand 7 should not hold. The task is then to find an
appropriate restrictive definition of certifying algomith

84

15. Conclusions

Certifying algorithms are a prefered kind of algorithm. yhmrove their work and they are
easier to implement reliably. Their wide-spread use woukhtly enhance the reliability of
algorithmic software.

16. Acknowledgements

We want to thank many colleages for discussions about asjpédhis paper, in particu-
lar, Ernst Althaus, Peter van Emde Boas, Harry Buhmann, Aigenwillig, Uli Finkler, Ste-
fan Funke, Dieter Kratsch, Franco Preparata, Peter Saridiensr Schomer, Raimund Seidel,
Jeremy Spinrad, and Christian Uhrig.

References

[ABC*09] D. Applegate, B. Bixby, V. Chvatal, W. Cook, D. G. Espiap#l. Goycoolea, and
K. Helsgaun. Certification of an optimal TSP tour througt8®, cities Operations
Research Letter87(1):11 — 15, 2009.

[ABCCO06] D. Applegate, B. Bixby, V. Chvatal, and W. Cookhe Traveling Salesman Prob-
lem: A Computational StudyPrinceton University Press, 2006.

[ACDEOQ7] David L. Applegate, William Cook, Sanjeeb Dashddbaniel G. Espinoza. Ex-
act solutions to linear programming problemsOperations Research Letters
35(6):693-699, 2007.

[AIJT09] E. Amaldi, C. luliano, T. Jurkiewicz, K. Mehlhorn, and Rizzi. Breaking through
theO(nm?n) Barrier for Minimum Cycle Bases. IBSA 2009volume 5757 o NCS
pages 301-312, 2009.

[AL94] N.M. Amato and M.C. Loui. Checking linked data struots. InProceedings of
the 24th Annual International Symposium on Fault-Tole@oimnputing (FTCS’94)
pages 164-173, 1994.

[AM99] S. Arikati and K. Mehlhorn. A Correctness Certificdte the Stoer-Wagner Mincut
Algorithm. Information Processing Letter30:251-254, 1999.

[BCRY96] G. Brodal, S. Chaudhuri, and J. Radhakrishnan. Bmelomized complexity of
maintaining the minimumNordic Journal of Computing3(4):337-351, 1996.

[BDH96] C. Barber, D. Dobkin, and H. Hudhanpaa. The quickptbdgram for convex hulls.
ACM Transactions on Mathematical Softwa?2:469-483, 1996.

[BEG"94] Manuel Blum, William S. Evans, Peter Gemmell, Sampathrkéa, and Moni Naor.
Checking the correctness of memoriddgorithmica 12((2/3)):225-244, 1994.

85

[BerO5] Sergey Bereg. Certifying and constructing minimaigid graphs in the plane.
In SCG '05: Proceedings of the twenty-first annual symposiur@a@mputational
geometrypages 73-80, New York, NY, USA, 2005. ACM.

[BK89] M. Blum and S. Kannan. Designing programs that chéekrtwork. InProceedings
of the 21th Annual ACM Symposium on Theory of Computing (88)(ages
86-97, 1989.

[BK95] M. Blum and S. Kannan. Designing programs that chdekrtwork. J. ACM
42(1):269-291, 1995. preliminary version in STOC’89.

[BKMO7] Andreas Brandstadt, Dieter Kratsch, and HaikolMi) editors. Graph-Theoretic
Concepts in Computer Science, 33rd International Worksip 2007, Dornburg,
Germany, June 21-23, 2007. Revised Papeadume 4769 ofLecture Notes in
Computer Scienceépringer, 2007.

[BL76] K.S. Booth and G.S. Lueker. Testing for the conseaitines property, interval
graphs, and graph planarity usim§-tree algorithms.Journal of Computer and
System Sciences3:335-379, 1976.

[BLR90O] M. Blum, M. Luby, and R. Rubinfeld. Self-testingfzecting with applications
to numerical problems. IRroceedings of the 22nd Annual ACM Symposium on
Theory of Computing (STOC'9Qages 73—-83, 1990.

[BIu93] Manuel Blum. Program result checking: A new apptosecmaking programs more
reliable. INICALP, pages 1-14, 1993.

[BMh94] C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeasr in Geometric Com-
putations. InProceedings of the 5th Annual ACM-SIAM Symposium on Discret
Algorithms (SODA'94)pages 16-23, 1994.

[BS94] J.D. Bright and G.F. Sullivan. Checking mergeablienily queues. InProceed-
ings of the 24th Annual International Symposium on FaulefBmt Computing
(FTCS'94) pages 144-153, Los Alamitos, CA, USA, June 1994. IEEE Cdenpu
Society Press.

[BS95] J.D. Bright and G.F. Sullivan. On-line error monitgy for several data structures.
In Proceedings of the 25th Annual International Symposium aultHolerant
Computing (FTCS'95)ages 392-401, Pasadena, California, 1995.

[BSM95] J.D. Bright, G.F. Sullivan, and G.M. Masson. Chexkihe integrity of trees. In
Proceedings of the 25th Annual International SymposiumauitHolerant Com-
puting (FTCS’95)pages 402—-413, Pasadena, California, 1995.

[BSM97] J.D. Bright, G.F. Sullivan, and G.M. Masson. A forilgaverified sorting certifier.
IEEE Transactions on Computer$6(12):1304-1312, 1997.

86

[BW94] Manuel Blum and Hal Wasserman. Program result-cimgckA theory of testing
meets a test of theory. FOCS pages 382-392, 1994.

[BW96] M. Blum and H. Wasserman. Reflections on the Pentiunsidin bug.IEEE Trans-
action on Computingd5(4):385-393, 1996.

[CCLT05] Maria Chudnovsky, Gérard Cornugjols, Xinming Liu,uP&. Seymour, and
Kristina Vuskovic. Recognizing Berge graph€ombinatorica 25(2):143-186,
2005.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, An&chrijver. Combinatorial
Optimization John Wiley & Sons, Inc, 1998.

[CGA] CGAL (Computational Geometry Algorithms Libraryyamv. cgal . or g.
[Chv93] V. Chvatal.Linear Programming Freeman, 93.

[CK70] D.R.Chand and S. S. Kanpur. An algorithm for convelypapes.J. ACM 17:78—
86, 1970.

[CMPSO03] Arjeh M. Cohen, Scott H. Murray, Martin Pollet, andlker Sorge. Certifying
solutions to permutation group problems. In Franz Baadktoe CADE, volume
2741 ofLecture Notes in Computer Scienpages 258—-273. Springer, 2003.

[CMS93] K. Clarkson, K. Mehlhorn, and R. Seidel. Four Resolt Randomized Incremental
Constructions. Computational Geometry: Theory and ApplicatipB8s185—-212,
1993.

[CPO6] C. Crespelle and C. Paul. Fully dynamic recognitigoathm and certificate for
directed cographDiscrete Appl. Math.154(12):1722-1741, 2006.

[CPL] CPLEX. wwv. cpl ex. com

[CRSTO06] Maria Chudnovsky, Neil Robertson, Paul Seymaua, Robin Thomas. The strong
perfect graph theorenAnn. of Math. (2) 164(1):51-229, 2006.

[CS89] K.L. Clarkson and P.W. Shor. Applications of randcemgling in computational
geometry, Il.Journal of Discrete and Computational Geome#y387—-421, 1989.

[CW82] D. Coppersmith and S. Winograd. On the asymptoticexity of matrix multi-
plication. SIAM J. Comput.11:472-492, 1982.

[DFK*03] M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel,. Bchomer,
R. Schulte, and D. Weber. Certifying and Repairing SoluditmLarge LPs, How
Good are LP-solvers?. IBRODA pages 255-256, 2003.

87

www.cgal.org
www.cplex.com

[DLPT98] O. Devillers, G. Liotta, F. Preparata, and R. Tasias Checking the convexity

of polytopes and the planarity of subdivisionrSGTA: Computational Geometry:
Theory and Applicationsl 1, 1998.

[dP95] J.C. de Pina.Applications of Shortest Path Method®hD thesis, University of
Amsterdam, Netherlands, 1995.

[Dus98] Pierre DusartAutour de la fonction qui compte le nombre de nombres premier
PhD thesis, Universit'e de Limoges, Limoges, France, 1998.

[Edm65a] J. Edmonds. Maximum matching and a polyhedron @ith- vertices.Journal of
Research of the National Bureau of Standa@iB:125-130, 1965.

[Edm65b] J. Edmonds. Paths, trees, and flow€ranadian Journal on Mathematicpages
449-467, 1965.

[EMS10] A. Elmasry, K. Mehlhorn, and J. M. Schmidt. A Lineanie Certifying Triconnec-
tivity Algorithm for Hamiltonian Graphs. March 2010.

[FKOO] Uriel Feige and Robert Krauthgamer. Finding andifgng a large hidden clique
in a semirandom graplRandom Struct. Algorithm46(2):195-208, 2000.

[FIo67] R. Floyd. Assigning meaning to programs. In J.T.\Baiz, editorMathematical
Aspects of Computer Sciengages 19-32. AMS, 1967.

[FM99] U. Finkler and K. Mehlhorn. Checking Priority Queués Proceedings of the 10th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’Pages 901—
902, 1999.

[Fre77] R. Freiwalds. Probabilistic machines can use lassing time. Ininformation
Processing 77, Proceedings of IFIP Congresspages 839-842, 1977.

[GMOO0] C. Gutwenger and P. Mutzel. A linear time implemeimatof SPQR-trees. In
Graph Drawing LNCS, pages 77-90, 2000.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Ra¢kdhe knowledge complexity
of interactive proof system$IAM J. Compu;.18(1):186—208, 1989.

[Gol80] M.C. Golumbic.Algorithmic Graph Theory and Perfect Graph&cademic Press,
1980.

[Gon08] G. Gonthier. Formal proof-the Four-Color theoréitices of the American Math-
ematical Society55(11), 2008.

[Hel06] K. Helsgaun. An effective implementation Kfopt moves for the Lin-Kernighan

TSP heuristic. Technical Report 109, Roskilde Univer@@06. Writings in Com-
puter Science.

88

[Her94] J. Herzberger, editofopics in Validated Computations — Studies in Computationa
Mathematics Elsevier, 1994.

[HHO5] Pavol Hell and Jing Huang. Certifying lexbfs recagm algorithms for proper
interval graphs and proper interval bigrapt®AM J. Discret. Math.18(3):554—
570, 2005.

[HK70] M. Held and R.M. Karp. The traveling-salesman prabland minimum spanning
trees.Operations Resear¢ii8:1138-1162, 1970.

[HK71] M. Held and R.M. Karp. The traveling-salesman prabland minimum spanning
trees, part Il.Mathematical Programmingl:6-25, 1971.

[HKO7] Pinar Heggernes and Dieter Kratsch. Linear-timeify@éng recognition algorithms
and forbidden induced subgrapiordic J. of Computingl4(1):87-108, 2007.

[HLO4] D. Halperin and E. Leiserowitz. Controlled pertutioa for arrangements of circles.
International Journal of Computational Geometry and Apations 14(4):277—
310, 2004. preliminary version in SoCG 2003.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer pemgming. Communications
of the ACM 12:576-585, 1969.

[Hoa72] C. A. R. Hoare. Proof of correctness of data reprasiems. Acta Informatica
1:.271-281, 1972.

[Hor87] J.D. Horton. A polynomial-time algorithm to find tisbortest cycle basis of a graph.
SICOMR 16:358-366, 1987.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a graph intwdnnected components.
SIAM Journal of Computind(3):135-158, 1973.

[HT74] J. E. Hopcroft and R. E. Tarjan. Efficient planaritygtieg. Journal of the ACM
21:549-568, 1974.

[Isa] Isabelle theorem provent t p: //i sabelle.in.tum de/.

[JP93] Michael Junger and William R. Pulleyblank. Geoneatiuality and combinatorial
optimization. In S.D. Chatterji, B. Fuchssteiner, U. Kahs and R.Lied|, editors,
JahrbuchUberblicke Mathematikpages 1-24. Vieweg, 1993.

[Kar90] A. Karabeg. Classification and detection of obdinrs to planarity.Linear and
Multilinear Algebra 26:15-38, 1990.

[KLM T09] T. Kavitha, Ch. Liebchen, K. Mehlhorn, D. Michail, R. Riz T. Ueckerdt, and
K. Zweig. Cycle Bases in Graphs: Characterization, Aldgwns, Complexity, and
Applications.Computer Science Revig@:199-243, 2009.

89

http://isabelle.in.tum.de/

[KMMSO06] D. Kratsch, R. McConnell, K. Mehlhorn, and J. Smdc Certifying Algorithms
for Recognizing Interval Graphs and Permutation Grapt&AM J. Comput.
36(2):326—353, 2006. preliminary version in SODA 2003,gmj58-167.

[KMP*08] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. YaplasSsroom Examples
of Robustness Problems in Geometric Computatio@smputational Geometry:
Theory and Applications (CGTA40:61-78, 2008. a preliminary version appeared
in ESA 2004, LNCS 3221, pages 702 — 713.

[KNO6] Haim Kaplan and Yahav Nussbaum. Certifying algamthfor recognizing proper
circular-arc graphs and unit circular-arc graphs. In F&d&omin, editorWG, vol-
ume 4271 ol ecture Notes in Computer Scienppages 289—-300. Springer, 2006.

[Kri02] M. Kriesell. A survey on contractible edges in grapbf a prescribed vertex con-
nectivity. Graphs and Combinatori¢pages 1-33, 2002.

[KS93] Tracy Kimbrel and Rakesh Kumar Sinha. A probabitistigorithm for verifying
matrix products using o(n2) time and log2n + o(1) random Bit6 Process. Letf.
45(2):107-110, 1993.

[KS96] D.R. Karger and C. Stein. A new approach to the mininawinproblem.Journal
of the ACM 43(4):601-640, 1996.

[KTO5] J. Kleinberg and E. Tardog\lgorithm Design Addison Wesley, 2005.

[LARO7] Van Bang Le and H. N. de Ridder. Characterisatiortslarear-time recognition of
probe cographs. In Brandstadt et 8KMO07], pages 226-237.

[LEC67] A.Lempel, S. Even, and |. Cederbaum. An algorithmpil@narity testing of graphs.
In P. Rosenstiehl, editofheory of Graphs, International Symposium, Rppages
215-232, 1967.

[LED] LEDA (Library of Efficient Data Types and Algorithms).
www. al gorithm c-sol uti ons. com

[LLRKSS85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, aid B. ShmoysThe Traveling
Salesman ProblenWiley, 1985.

[LSSO07] Min Chih Lin, Francisco J. Soulignac, and Jayme Lsivarcfiter. Proper helly
circular-arc graphs. In Brandstadt et 8KM07], pages 248-257.

[McCO04] Ross M. McConnell. A certifying algorithm for the isecutive-ones property. In
J. lan Munro, editorSODA pages 768—777. SIAM, 2004.

[MeiO5] Daniel Meister. Recognition and computation of mal triangulations for at-
free claw-free and co-comparability grapBsscrete Appl. Math.146(3):193-218,
2005.

90

www.algorithmic-solutions.com

[Met97] M. Metzler. Ergebnistiberpriufung bei Graphemaithmen. Master’s thesis, Fach-
bereich Informatik, Universitat des Saarlandes, SaaHari, 1997.

[MMN 98] K. Mehlhorn, M. Muller, S. Naher, S. S. Schirra, M. Se@l Uhrig, and J. Ziegler.
A computational basis for higher-dimensional computatlgeometry and its ap-
plications.Computational Geometry: Theory and Applicatiph8:289-303, 1998.

[MN89] K. Mehlhorn and S. Naher. LEDA: A Library of Efficieribata Types and Algo-
rithms. InMFCS’89 volume 379 of Lecture Notes in Computer Science, pages
88-106, 1989.

[MN95] K. Mehlhorn and S. Naher. LEDA, a Platform for Comhtorial and Geometric
Computing.Communications of the ACN88:96-102, 1995.

[MN98] K. Mehlhorn and S. Naher. From algorithms to workipgpgrams: On the use
of program checking in LEDA. IMFCS’98 volume 1450 of Lecture Notes in
Computer Science, pages 84-93, 1998.

[MN99] K. Mehlhorn and S. NahefThe LEDA Platform for Combinatorial and Geometric
Computing Cambridge University Press, 1999.

[MNS'99] Kurt Mehlhorn, Stefan Naher, Michael Seel, Raimundi8giThomas Schilz, Ste-
fan Schirra, and Christian Uhrig. Checking geometric paogs or verification of
geometric structure€omputational Geometry2(1-2):85-103, 1999. preliminary
version in SoCG 96.

[MNU97] K. Mehlhorn, S. Naher, and C. Uhrig. The LEDA Platio for Combinatorial
and Geometric Computing. IRroceedings of the 24th International Colloquium
on Automata, Languages and Programming (ICALP,9%0lume 1256 of Lecture
Notes in Computer Science, pages 7-16, 1997.

[Mos09] Robin A. Moser. A constructive proof of the Lovaszdblemma. InSTOC '09:
Proceedings of the fourty-first annual ACM symposium on iijhebcomputing
page to appear, New York, NY, USA, 2009. ACM.

[MR92] G. L. Miller and V. Ramachandran. A new graph tricoatigty algorithm and its
parallelization.Combinatorica 12(1):53-76, 1992.

[MS08] K. Mehlhorn and P. Sanderglgorithms and Data Structures: The Basic Toolbox
Springer, 2008. 300 pages.

[MZ05] J. Strother Moore and Qiang Zhang. Proof pearl: Oiji's shortest path algorithm
verified with acl2. In Joe Hurd and Thomas F. Melham, editbh&gorem Proving
in Higher Order Logicsvolume 3603 of_ecture Notes in Computer Scienpages
373-384. Springer, 2005.

91

[Nec97] George C. Necula. Proof-carrying code. P@PL '97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programniamguages
pages 106-119. ACM Press, 1997.

[NI92] H. Nagamochi and T. Ibaraki. A linear-time algorithfor finding a sparsek-
connected spanning subgraph ok-aonnected graphAlgorithmicg 7:583-596,
1992.

[NL96] G. C. Necula and P. Lee. Safe kernel extensions withon-time checking. In
SIGOPS Operating Systems Reviealume 30, pages 229-243, 1996.

[NM9O0] S. Naher and K. Mehlhorn. LEDA: A Library of Efficieridata Types and Algo-
rithms. InICALP’90, volume 443 of Lecture Notes in Computer Science, pages
1-5. Springer, 1990.

[NPO7] Stavros D. Nikolopoulos and Leonidas Palios. An Oyitime certifying algorithm
for recognizing hhd-free graphs. In Franco P. PreparataCamndi Fang, editors,
FAW, volume 4613 of_ecture Notes in Computer Scienpages 281-292. Springer,
2007.

[PS85] F.P. Preparata and M.l. Shamo£omputational Geometry: An Introduction
Springer, 1985.

[RTL76] D. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmspacts of vertex elimination
on graphsSIAM J. Comput.5:266—-283, 1976.

[RumO1] S. Rump. Self-validating methods.inear Algebra and its Applications (LAA)
324:3-13, 2001.

[Ryb09] Konstantin A. Rybnikov. An efficient local approatt convexity testing of
piecewise-linear hypersurfaceSomput. Geom42(2):147-172, 2009.

[Sch86] A. Schrijver.Theory of Linear and Integer Programmin@iley, 1986.
[Sch03] A. Schrijver.Combinatorial Optimization (3 Volumes$pringer Verlag, 2003.

[Sch09] P. SchweitzeProblems of unknown complexity : graph isomorphism and Rgms
theoretic numbersPhd thesis, Universitat des Saarlandes, Saarbriclemaay,
July 2009.

[Sch10] J. M. Schmidt. Construction sequences and cergfig-connectedness. Rvth
International Symposium on Theoretical Aspects of Com@dience (STACS’10)
Nancy, France, 201t t p: // page. m . fu- berlin. de/jeschm d/ pub.

[Sei86] R. Seidel. Constructing higher-dimensional cankells at logarithmic cost per
face. InProceedings of the 18th Annual ACM Symposium on Theory Ciomgpu
(STOC’86) pages 404-413, 1986.

92

http://page.mi.fu-berlin.de/jeschmid/pub

[SM90] G.F. Sullivan and G.M. Masson. Using certificatioails to achieve software fault
tolerance. In Brian Randell, editdProceedings of the 20th Annual International
Symposium on Fault-Tolerant Computing (FTCS ;$@ges 423-433. IEEE, 1990.

[SM91] G.F. Sullivan and G.M. Masson. Certification traitg fata structures. IRro-
ceedings of the 21st Annual International Symposium ontHalérant Comput-
ing(FTCS’91) pages 240-247, Montreal, Quebec, Canada, 1991. IEEE Gempu
Society Press.

[SoP] SoPlexwww. zi b. de/ Opti m zat i on/ Sof t war e/ Sopl ex.

[SW97] M. Stoer and F. Wagner. A simple min-cut algorithndournal of the ACM
44(4):585-591, July 1997.

[SWM95] G.F. Sullivan, D.S. Wilson, and G.M. Masson. Cecafion of computational re-
sults. IEEE Transactions on Computer4(7):833—847, 1995.

[TY85] E. E. Tarjan and M. Yannakakis. Addendum: Simple #inime algorithms to test
chordality of graphs, test acyclicity of hypergraphs, aekkstively reduce acyclic
hypergraphsSIAM Journal on Computind.4:254-255, 1985.

[VCC] VCC, a mechanical verifier for concurrent C programs.
http://vcc. codepl ex. coni.

[Ver] Verisoft XT. htt p://ww. veri soft. de/index_en. htm.

[WB97] Hal Wasserman and Manuel Blum. Software reliabilitia run-time result-
checking.J. ACM 44(6):826—849, 1997. preliminary version in FOCS’94.

[WC81] M.N. Wegman and J.L. Carter. New hash functions aed thise in authentication
and set equalityJournal of Computer and System Scien@¥3):265-279, june
1981.

[Wil84] S.G. Williamson. Depth-First Search and KuratowSkibgraphs.Journal of the
ACM, 31(4):681-693, 1984.

[Yap03] C.-K. Yap. Robust geometric computation. In J.Eo@man and J. O’'Rourke, ed-
itors, Handbook of Discrete and Computational Geomettyapter 41. CRC Press
LLC, Boca Raton, FL, 2nd edition, 2003.

[Zel05] A. Zeller. WHY PROGRAMS FAIL: A Guide to Systematic DebuggiMgrgan-
Kaufmann, 2005.

93

www.zib.de/Optimization/Software/Soplex
http://vcc.codeplex.com/
http://www.verisoft.de/index_en.html

	Introduction
	First Examples
	Tutorial Example 1: Testing Whether a Graph is Bipartite
	Tutorial Example 2: The Connected Components of an Undirected Graph
	Tutorial Example 3: Greatest Common Divisor
	Tutorial Example 4: Shortest Path Trees
	Example: Maximum Cardinality Matchings in Graphs
	Case Study: The LEDA Planar Embedding Package

	Examples of Program Failures
	Relation to Extant Work
	Definitions and Formal Framework
	Strongly Certifying Algorithms
	Certifying Algorithms
	Weakly Certifying Algorithms
	Efficiency
	Simplicity and Checkability
	Deterministic Programs with Trivial Preconditions
	Non-Trivial Preconditions
	An Objection

	Checkers
	The Pragmatic Approach
	Manipulation of the Input
	Formal Verification of Checkers

	Advantages of Certifying Algorithms
	General Techniques
	Reduction
	An Example
	The General Approach

	Linear Programming Duality
	Characterization Theorems
	Approximation Algorithms and Problem Relaxation
	Composition of Programs

	Further Examples
	Convexity of Higher-dimensional Polyhedra and Convex Hulls
	Solving Linear Systems of Equations
	NP-Complete Problems
	Maximum Weight Independent Sets in Interval Graphs
	String Matching
	Chordal Graphs
	Numerical Algorithms
	Guide to Literature

	Randomization
	Monte Carlo Algorithms resist Deterministic Certification
	Integer Arithmetic
	Matrix Operations
	Cycle Bases
	Definitions

	Certification and Verification
	Reactive Programs and Data Structures
	The Dictionary Problem
	Priority Queues

	Teaching Algorithms
	Future Work
	Conclusions
	Acknowledgements

