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Summary A certifying algorithm is an algorithm that pro-
duces, with each output, a certificate or witness that the
particular output is correct. A user of a certifying algorithm in-
puts x, receives the output y and the certificate w, and then
checks, either manually or by use of a program, that w proves
that y is a correct output for input x. In this way, he/she can
be sure of the correctness of the output without having to
trust the algorithm. We put forward the thesis that certify-
ing algorithms are much superior to non-certifying algorithms,
and that for complex algorithmic tasks, only certifying algo-
rithms are satisfactory. Acceptance of this thesis would lead to
a change of how algorithms are taught and how algorithms are
researched. The widespread use of certifying algorithms would
greatly enhance the reliability of algorithmic software. We
also demonstrate that the formal verification of result check-
ers is within the reach of current verification technology. The
combination of certifying algorithms and formal verification of
result checkers leads to formally verified computations. ���
Zusammenfassung Ein zertifizierender Algorithmus liefert
zusätzlich zur gewöhnlichen Ausgabe ein Zertifikat, welches

beweist, dass die gelieferte Ausgabe korrekt ist. Ein Be-
nutzer des zertifizierenden Algorithmus erhält bei Eingabe x
nicht nur eine Ausgabe y, sondern zusätzlich das Zertifikat w.
Der Benutzer überprüft nun, entweder von Hand oder mit
Hilfe eines Programmes, ob das Zertifikat w tatsächlich be-
weist, dass y eine korrekte Ausgabe bei Eingabe x ist. Der
Benutzer kann dadurch der Korrektheit der Ausgabe sicher
sein, selbst wenn er der Korrektheit des Algorithmus miss-
traut. Wir behaupten, dass zertifizierende Algorithmen nicht-
zertifizierenden Algorithmen weit überlegen sind, und dass
für komplexe algorithmische Berechnungen nur zertifizierende
Algorithmen adäquat sind. Daher sollte der Begriff Teil der
Informatikausbildung sein und als Prinzip des Algorithmen-
entwurfs gelehrt werden. Die konsequente Verwendung von
zertifizierenden Algorithmen erhöht die Verlässligkeit von Soft-
ware deutlich. Wir zeigen, dass mit heutiger Verifikationstech-
nologie das Verifizieren von Ergebnischeckern im Bereich des
Möglichen liegt. Die Kombination von zertifizierenden Algo-
rithmen und formaler Verfikation ermöglicht formal verifizierte
Berechnungen.

Keywords D.2.5 [Software: Software Engineering: Software/Program Verification]; D.2.5 [Software: Software Engineering: Testing
and Debugging]; certifying algorithms ��� Schlagwörter Software Engineering, Programmverifikation, zertifizierende
Algorithmen

1 Introduction
One of the most prominent and costly problems in soft-
ware engineering is correctness of software. When the
user gives x as an input and the program outputs y, the

user usually has no way of knowing whether y is a correct
output on input x or whether it has been compromised
by a bug. The user is at the mercy of the program. A cer-
tifying algorithm is an algorithm that produces with each
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Figure 1 The top figure shows the I/Obehaviorof a conventional program
for computing a function f . The user feeds an input x to the program
and the program returns an output y. The user of the program has no
way of knowing whether y is equal to f (x). The bottom figure shows the
I/O behavior of a certifying algorithm, which computes y and a witness
w. The checker C accepts the triple (x, y, w) if and only if w is a valid
witness for the equality y= f (x).

output a certificate or witness that the particular output is
correct. By inspecting the witness, the user can convince
himself that the output is correct, or reject the output
as buggy. He is no longer on the mercy of the program.
Figure 1 contrasts a standard algorithm with a certifying
algorithm for computing a function f .

A user of a certifying algorithm inputs x and receives
the output y and the witness w. He then checks that w
proves that y is a correct output for input x. The process
of checking w can be automated with a checker, which is
an algorithm for verifying that w proves that y is a correct
output for x. In many cases, the checker is so simple that
a trusted implementation of it can be produced. Formal
verification of complex algorithms is not feasible with
current verification technology. However, formal verifi-
cation of checkers is feasible with current technology.
Assume that we have formally proved that if the checker
C accepts the triple (x, y, w) then y = f (x). Assume also
that C accepts a triple (x, y, w). Then we have a formal
proof for the correctness of y and the user may proceed
with complete confidence that output y has not been
compromised.

A tutorial example is the problem of recognizing
whether a graph is bipartite, that is, whether the vertices
can be colored with colors red and blue such that all
edges have distinctly colored endpoints. A non-certifying
algorithm for testing bipartiteness outputs a single bit
y; the bit tells whether the graph is bipartite or not.
A certifying algorithm does more; it proves its answer
correct by providing an appropriate witness w, see Fig. 2.
If the graph is bipartite, then w is a proper color-
ing. If the graph is not bipartite, w is an odd-length
cycle in G. Clearly odd-length cycles are non-bipartite.
Since a two-coloring of G would induce a two-coloring
of the odd cycle contained in G, G cannot be two-
colorable.

Figure 2 The graph on the left is bipartite and the coloring of the
nodes proves this fact. The graph on the right is non-bipartite. The
highligthed edges form an odd-length cycle and odd-length cycles are
non-bipartite. Assume for example vertex a is colored red. Then b must
be colored blue, then c must be colored red, then d must be colored
blue, then e must be colored red, and hence a must be colored blue,
a contradiction.

We put forward the thesis that certifying algorithms
are much superior to non-certifying algorithms and that
for complex algorithmic tasks only certifying algorithms
are satisfactory. Acceptance of this thesis would lead to
a change of how algorithms are taught and how algo-
rithms are researched. The wide-spread use of certifying
algorithms would greatly enhance the reliability of algo-
rithmic software. Certifying algorithms are available for
many algorithmic tasks, see [14] for a survey, and are
the design principle for LEDA, the library of efficient
data types and algorithms [13; 15]. Formal verification of
checkers is within reach of current verification technol-
ogy, and thus allows to formally verify the correctness of
outputs of complex certifying algorithms.

Certifying algorithms have many advantages over stan-
dard algorithms. They can be tested on every input,
they are reliable in the sense that errors are immediately
caught, they allow to trust a program without under-
standing it or even without knowing it, and they greatly
increase the reliability of implementations. The quality
of the programs in LEDA rests to a large extent on the
consequent use of certifying algorithms.

We follow a simple plan. We discuss two case studies
and then survey history, extant work, and the relation to
testing and verification.

2 Case Study I: Planarity of Graphs
Graphs are frequently used to model and visualize
relationships between entities, e. g., vertices represent
companies and edges represent partial ownership. Il-
lustrative visualizations of graphs can be obtained by
drawing the graphs with no or few edge crossings. This
is one of the many reasons, why planar graphs are highly
relevant in various contexts.

A planar embedding of an undirected graph G is
a drawing of the graph in the plane such that no two
edges of G cross. The graphs in Figs. 2 and 4 show exam-
ples of this. A graph is planar if it is possible to embed
it in the plane in this way. Planar graphs were among

288



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

An Introduction to Certifying Algorithms ���

Figure 3 Every non-planar graph contains a subdivision of one of the
depicted Kuratowski graphs K5 and K3,3 as a subgraph. We invite the
reader to convince herself/himself that K5 and K3,3 are non-planar.
Take a piece of paper and try to draw these graphs in a planar way.
You will get stuck. Convince yourself that you will always get stuck, no
matter how hard you try. We suggest that you first draw a cycle passing
through all the vertices and then try to add the other edges. The lower
part of the figure shows a non-planar graph. Non-planarity is witnessed
by a K3,3.

the first classes of graphs that were studied extensively.
In the early 1900’s, there was an extensive effort to give
a characterization of those graphs that are planar. In 1930,
Kuratowski gave what remains one of the most famous
theorems in graph theory [12]: a graph is planar if and
only if it has no subdivision of a K5 or a K3,3 as a subgraph
(see Fig. 3). The K5 is the complete graph on five vertices,
the K3,3 is the complete bipartite graph with three vertices
in each bipartition class, and a subdivision of a graph is
what is obtained by repeatedly subdividing edges by in-
serting vertices of degree two on them.

The planarity test in LEDA played a crucial role in the
development of certifying algorithms. There are several
efficient algorithms for planarity testing. An implemen-
tation of the Hopcroft and Tarjan [11] algorithm was
added to LEDA in 1991. The implementation had been
tested on a small number of graphs. In 1993, a researcher
sent Mehlhorn and Näher a graph together with a planar
drawing of it, and pointed out that the program declared
the graph non-planar. It took Mehlhorn and Näher some
days to discover the bug. More importantly, they realized
that a complex question of the form “is this graph planar”
deserves more than a yes-no answer. They adopted the
thesis that

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

What does this mean for the planarity test? If a graph is
declared planar, a proof should be given in the form of
a planar drawing or an embedding, which the program
already did. If a graph is non-planar, the program should
not just declare this; it should supply a proof of this.

Figure 4 The node labels certify that the indicated matching is of max-
imum cardinality: all edges in the graph have either both endpoints
labeled as two or at least one endpoint labeled as one. Since a matching
is a subgraph, this statement also holds for the edges in any matching.
Therefore, any matching can use at most one edge with both endpoints
labeled two and at most four edges that have an endpoint labeled one.
Therefore, no matching has more than five edges. The matching shown
consists of five edges and hence has maximum cardinality.

The existence of an obvious proof is known by Kura-
towski’s theorem: it suffices to point out a Kuratowski
subgraph. Subsequently an efficient algorithm for finding
Kuratowski subgraphs was added to the library, which
makes the planarity test a certifying algorithm.

The user of the certifying planarity test only needs to
understand the easy direction of Kuratowski’s theorem,
namely, that graphs that contain a subdivision of a K5

or K3,3 are non-planar. There is no need to understand the
difficult direction that non-planar graphs always contain
a subdivision of a K5 or a K3,3.

3 Case Study II: Maximum Cardinality
Matchings in Graphs

Assume you run a dating service. You have clients and
for each client you have a list of other clients with which
you might match with the client. This situation is readily
modeled as a graph. There is a vertex for each client and
an edge for each possible match.1 The goal of the dating
service is to arrange a maximum number of dates. This
is a maximum cardinality matching problem.

A matching in a graph G is a subset M of the edges of
G such that no two share an endpoint. A matching has
maximum cardinality if its cardinality is at least as large
as that of any other matching. Figure 4 shows a graph,
a matching, and a proof that the matching has maximum
cardinality. Such a proof always exists. An odd-set cover
OSC of G is a labeling of the vertices of G with nonneg-
ative integers such that every edge of G is either incident
to a vertex labeled 1 or connects two vertices labeled with
the same number i ≥ 2.

1 A dating service will also have an estimate of success for each possible
match; this makes the problem harder. Also, it will typically match
clients of different sex; this makes the problem simpler.
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Theorem 1 ([7]). Let M be any matching in G and let
OSC be an odd-set cover of G. For any i ≥ 0, let ni be the
number of vertices labeled i. If

|M|= n1 +
∑

i≥2

�ni/2� , (1)

M is a maximum cardinality matching.

Proof. Let N be any matching in G. For i, i ≥ 2, let Ni

be the edges in N that connect two vertices labeled i and
let N1 be the remaining edges in N. By the definition of
odd-set cover, every edge in N1 is incident to a vertex
labeled one. Since the edges in a matching do not share
endpoints,

|Ni| ≤ �ni/2� and |N1| ≤ n1 .

Thus |N|= |N1| +
∑

i≥2 |Ni| ≤ n1 +
∑

i≥2�ni/2�= |M|.
We refer to the hypothesis of Theorem 1 “M is a matching
in G, OSC is an odd-set cover for G, and Eq. (1) holds”
as witness predicate. It can be shown (but this is non-
trivial) that for any maximum cardinality matching M
there is an odd-set cover OSC such that Eq. (1) holds
and all labels are integers between 0 and n – 1, where
n is the number of vertices of G. In such a cover all ni

with i ≥ 2 are odd, hence the name. A certifying algorithm

Figure 5 The checker for maximum cardinality matchings.

for maximum cardinality matching returns a matching M
and an odd-set cover OSC such that (1) holds. Edmonds
designed a certifying algorithm for maximum cardinality
matchings. An efficient implementation of the algorithm
is part of LEDA.

Let us next discuss a checker. Its input is the graph
G= (V , E), a list M of edges of G and an odd-set cover
OSC. In order to verify the witness predicate, the checker
performs the following tests:
1. Check that M is a matching, i. e., that no two edges in

M share an endpoint. In order to perform this check
efficiently, we determine for each vertex of G, its degree
with respect to M. We initialize an array indexed by
vertices to zero and then iterate over the edges in M.
For an edge (s, t) ∈ M we increase the degree of s and
t. If the degrees of all vertices stay below two, M is
a matching.

2. Check that OSC is a vertex cover. We iterate over all
edges (s, t) of G and check that either s or t is labeled 1
or that both have the same label and this label is greater
than one. We also check that all labels are between 0
and n – 1 inclusive.

3. Finally, we check Eq. (1).
A program for the above is short and simple, see Fig. 5.

However, even short and simple programs may be
incorrect. In fact in the version of the checker in [15],
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the check whether M is a matching is missing. This is
where formal verification steps in. Assume we had formal
proofs of the following three statements:
• Checker Correctness: The program of Fig. 5 accepts

a triple (G, M, OSC) if and only if M is a matching in
G, OSC is an odd-set cover of G, and Eq. (1) holds.

• Witness Property: Theorem 1.
• Abstraction Correctness: Theorem 1 refers to mathe-

matical concepts, such as graphs and functions from
vertices to integers. The input to the checker are a con-
crete representation of a graph, a list M of edges, and
an array OSC indexed by vertices. So we need a proof
that what the checker checks for the concrete objects
is what Theorem 1 requires for the abstract objects.

Then we have formal proofs of instance correctness, i. e.,
whenever a triple (G, M, OSC) is accepted by our checker,
we have a formal proof that M is a maximum cardi-
nality matching in G. We still have no guarantee that
our matching algorithm is correct. However, we have the
next best situation. If a triple (G, M, OSC) is accepted
by our checker, we have a formal proof that M is of
maximum cardinality, and if the triple is not accepted,
we are pointed to a bug. If the program is correct, the
latter will never happen. If the program is not correct,
errors will not go unnoticed.

In [2] we have carried out the approach outlined above
after reformulating the checker in the programming lan-
guage C. Figure 6 shows the workflow. We verify code
with VCC [6], an automatic code verifier for the entire
language C. Our choice is motivated by the maturity
of the tool and the availability of an assertion language
which is rich enough for our requirements. In the Verisoft
XT project [18] VCC was successfully used to verify tens
of thousands lines of non-trivial C code. VCC offers
a second-order logic assertion language with ghost code
and types such as maps and unbounded integers. This

Figure 6 The workflow of the verification: The checker is written in C. We prove in VCC that it meets its specification, i. e., accepts a triple of
(representation of a graph, list of edges of the graph, labeling of the nodes of the graph) if and only if the triple satisifies the concrete version of
the witness predicate. We also formulate the abstract version of the witness predicate in VCC and prove its equivalence to the concrete version. The
abstract version of the witness predicate is translated to Isabelle/HOL and Theorem 1 is proved there.

gives us enough expressiveness to quantify over graphs,
labellings, etc. and simplifies the translation to other
proof systems. For verifying the mathematical part, we
resort to Isabelle/HOL, a higher-order-logic interactive
theorem prover [17]. We do so, since it has a large set of
already formalized mathematics, a descriptive proof for-
mat and various automatic proof methods and tools. We
next discuss how we resolved the three proof obligations
mentioned above.
• Checker Correctness: Starting point is the checker

code written in C. Using VCC we annotate the func-
tions and data structures, such that the concrete
witness predicate can be established as postcondition
of the checker function.

• Abstraction Correctness: The concrete witness pred-
icate is defined over C data-structures, e. g., pointers,
arrays, unions and bounded numbers. A one-to-one
translation to Isabelle/HOL would have to unveil the
complete type and memory axiomatization of C and
VCC and would thus generate an extremely large proof
context. We avoid this overhead by first abstracting all
involved data structures and properties to pure math-
ematical objects and definitions (using VCC ghost
types) by defining suitable abstraction mappings. As
a result we obtain a second-order logic formula in VCC
for the abstract witness property. We justify this ab-
straction by proving correspondence lemmas between
abstract and concrete properties in VCC.

• Export to Isabelle/HOL: Next – based on the ab-
stract postcondition of the checker – we formulate
Theorem 1 in VCC. Establishing such a theorem may
involve non-trivial mathematical reasoning. Therefore
we translate it to Isabelle/HOL. Due to the level of
abstraction this translation is purely syntactical.

• Witness Property: We prove the final theorem using
Isabelle/HOL.
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4 History and Extant Work
The notion of a certifying algorithm is ancient. Already
al-Khwarizmi in his book on algebra described how to
(partially) check the correctness of a multiplication. The
extended Euclidean algorithm for greatest common divi-
sors is also certifying; it goes back to the 17th century.
The seminal work by Blum and Kannan [3] on programs
that check their work put result checking in the limelight.
There is however an important difference between cer-
tifying algorithms and programs that check their work.
Certifying programs produce with each output an easy-
to-check certificate of correctness; Blum and Kannan are
mainly concerned with checking the work of programs
in their standard form. Mehlhorn and Näher adopted
certifying algorithms as a design principle for LEDA.

How general is the approach? The pragmatic answer
is that we know of 100+ certifying algorithms, see [14]
for a survey. In particular, there are certifying algorithms
for the problems that are usually treated in an intro-
ductory algorithms course, such as connectedness and
strong connectedness, minimum spanning trees, shortest
paths, maximum flows, and maximum matchings. The
theoretical answer is that every algorithm can be made
weakly certifying2 without asymptotic loss of efficiency,
but the construction underlying this result is artificial
and requires a correctness proof in some formal system.
However, the result is also assuring: certifying algorithms
are not elusive. The challenge is to find natural ones.

The two main approaches to program correctness are
program testing and program verification. Program test-
ing [19] executes a given program on inputs for which the
correct output is already known by some other means,
e. g., by human effort or by execution of another program
that is believed to be correct. However, in most cases, it
is infeasible to determine the correct output for all pos-
sible inputs by other means or to test the software on all
possible inputs. Thus testing is usually incomplete and
therefore bugs may evade detection. The Pentium bug is
an example [4]. Certifying programs greatly enhance the
power of testing. A certifying program can be tested on
every input. The test is whether the checker accepts the
triple (x, y, w). If it does not, either output or witness is
incorrect.

Program verification refers to formal proofs of
correctness of programs. The principles are well estab-
lished [8; 10]. However, handwritten proofs are only
possible for small programs owing to the complexity and
tediousness of the proof process. Using computer-assisted
proof systems, formal proofs for interesting theorems
were recently given [9; 16; 18]. Program verification and
certifying algorithms can support each other. Checkers
are usually much simpler than the algorithms they check;

2 A weakly certifying algorithm is only required to halt for inputs
satisfying the precondition. The witness proves that either the input did
not satisfy the precondition or the output satisfies the postcondition,
but it does not tell which alternative holds.

they are amenable to formal verification as we have seen
in Sect. 3; the paper [5] provides an earlier example.

5 Conclusions
We put forward the thesis that certifying algorithms
are much superior to non-certifying algorithms and that
for complex algorithmic tasks only certifying algorithms
are satisfactory. Acceptance of this thesis would lead to
a change of how algorithms are taught and how algo-
rithms are researched. The wide-spread use of certifying
algorithms would greatly enhance the reliability of algo-
rithmic software. Certifying algorithms are available for
many algorithmic tasks and are the design principle for
LEDA. Formal verification of checkers is within reach
of current verification technology. Certifying algorithms
have many advantages over standard algorithms. They
can be tested on every input, they are reliable in the
sense that errors are immediately caught, they allow to
trust a program without understanding it or even with-
out knowing it, and they greatly increase the reliability of
implementations.
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